
Elliptic Envelope Based Detection of Stealthy False
Data Injection Attacks in Smart Grid Control

Systems
Mohammad Ashrafuzzaman

Department of Computer Science
University of Idaho
Moscow, ID, USA

ORCID: 0000-0002-2882-3821

Saikat Das
Department of Computer Science

University of Memphis
Memphis, TN, USA

ORCID: 0000-0003-1142-8259

Ananth A. Jillepalli
Department of Computer Science

University of Idaho
Moscow, ID, USA

ORCID: 0000-0003-0089-8263

Yacine Chakhchoukh
Department of Electrical and Computer Engineering

University of Idaho
Moscow, ID, USA

ORCID: 0000-0001-7263-2419

Frederick T. Sheldon
Department of Computer Science

University of Idaho
Moscow, ID, USA

ORCID: 0000-0003-1241-2750

Abstract—State estimation is an important process in power
transmission systems. Stealthy false data injection attacks (SF-
DIA) against state estimation may cause electricity theft, minor
disturbances or even outages. Accurate and precise detection
of these attacks are very important to prevent or minimize
damages. In this paper, we propose an unsupervised learning
based scheme to detect SFDIA on the state estimation. The
scheme uses random forest classifier for dimensionality reduction
and elliptic envelope for detecting these attacks as anomalies. We
compare the performance of the elliptic envelope method with
four other unsupervised methods. All five models are trained
and then tested with a dataset from a simulated IEEE 14-bus
system. The results demonstrate that the elliptic envelope based
approach provides the best detection rate and least false alarm
rate among these five unsupervised methods.

Index Terms—Smart grid security, False data injection attack,
unsupervised learning, elliptic envelope.

I. INTRODUCTION

Incorporation of cyber capabilities into smart power grids
functionality has made these cyber-physical systems (CPS) and
critical infrastructures susceptible to cybersecurity threats [1,
2]. One of the many ways a smart power grid can be attacked
over the cyber network is using stealthy false data injection
attacks (SFDIA) on the state estimation (SE) process in the
transmission systems [3]. SE collects measurement data from
sensors in remote terminal units (RTUs) in the power transmis-
sion buses through the supervisory control and data acquisition
(SCADA) systems and computes voltage magnitudes and
phase angles for all the buses in the transmission system [4]. A
cyber-attacker can intelligently modify this measurement data
after compromising RTUs or intruding into the communication
channels. The falsely injected measurement data can affect the

outcome of the SE and can potentially mislead operators at
the power control centers to take erroneous corrective actions,
which may disrupt the operation of the grid. This so-called
stealthy false data injection attacks (SFDIA), a class of CPS
attack, may take an important role in a coordinated attack on
the power grid [5]. For example, a coordinated cyber-attack
that included SFDIA components caused a power outage for
about 225,000 Ukrainians in December 2015 [6].

Detection of SFDIA is an active research area. Detection
methods using traditional statistical approaches and physics of
state estimation have been proposed. Lately, use of data-driven
machine learning-based approaches are gaining popularity [7].

A. Motivation

SFDIA are subtle modifications of bus measurement data
and happen very sparsely. Therefore, SFDIA can be considered
anomalies compared to measurement data corresponding to the
normal grid operation. Hence, the problem can be reduced to
an anomaly or an outlier detection task that can be handled
by machine learning schemes.

Among many machine learning methods, the unsupervised
methods are particularly suited for anomalies and outliers
detection [8, 9]. Also, unsupervised learning can be applied
to a wider range of datasets because they do not need labeled
data for training. While it may not be very difficult to collect
data during normal operation of transmission systems, “attack”
data is very rarely available because attacks do not happen
often. In addition to that the process of curating the data
to create labeled datasets is an onerous task. Instead of
being trained on data labeled with ground truth, unsupervised
models work by finding the hidden similarities in different
data components and attempt to group similar data instances
in regions or clusters. For bi-modal data like SE measurement978-1-7281-2547-3/20/$31.00 ©2020 IEEE



data with sparse attacks, unsupervised models create one
cluster fitting most of the non-attack data (major data) and treat
instances lying far outside the cluster as anomalies. Therefore,
unsupervised models are particularly well-suited to discover
zero-day attacks never before encountered. Elliptic envelope
algorithm is an unsupervised machine learning method that
uses covariance estimation on Gaussian distribution data [10].
Elliptic envelope tries to make an elliptical cluster and fits
the major class instances in that. Instances far away from the
cluster are then considered as anomalies. Therefore, elliptic
envelope is suitable for Gaussian SE measurement data with
sparse SFDIA.

B. Contributions

In this paper, we present an elliptic envelope based approach
for detection of SFDIA. We fine-tune hyper-parameter values
to find the model having the best detection rate with minimum
false alarms. We generate datasets from a simulated IEEE
14-bus system using MATPOWER. We reduce the number
of features in data to improve speed of training by utilizing
importance-based feature ordering capability of random forest
classifier (RFC) and selecting only the most important features.
We run elliptic envelope method with different parameter
values and identify the best performing model. In addition,
we run four other unsupervised machine learning algorithms,
namely one-class support vector machine (OCSVM) with
linear kernel, OCSVM with polynomial kernel, isolation forest
and local outlier factor with the dataset, and compare results
from the elliptic envelope based model with those from the
four other models. We find that the elliptic envelope method
performs far better than other four methods.

C. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related works. Section III briefly de-
scribes the state estimation and stealthy FDI attack. Section IV
presents the elliptic envelope based SFDIA detection scheme.
A set of experiments with this scheme along with the results
are presented in Section V. Conclusions are presented in Sec-
tion VI, followed by an acknowledgment and the references.

II. RELATED WORK

A number of machine learning based approaches, using su-
pervised, unsupervised, and semi-supervised learning models,
have been developed to detect SFDIA on the state estimation
in power transmission systems. Most machine learning based
SFDIA detection considered supervised methods [11]–[17].
In this section, a few works that are based on unsupervised
learning are discussed.

Ahmed et al. [18] utilized unsupervised learning method
isolation forest (ISOF) to detect FDI attacks using simulated
data generated by MATPOWER. They reduced the dimension-
ality of the data using principal component analysis (PCA). To
demonstrate that ISOF performs better, they compared their
results with those of a few other learning methods namely sup-
port vector machine (SVM), k-nearest neighbors (k-NN), naive

Bayes (NB) and multilayer perceptron (MLP). They did not
report how long it took to train the models. They reported only
accuracy, precision and F1-score values. It is surprising that
their results of ISOF are better than the other models which are
all supervised models. Generally, supervised models perform
better in terms of accuracy and precision than unsupervised
models on the same dataset because they are trained with
labeled data. In a separate work, Ahmed et al. [16] proposed
a Euclidean distance-based anomaly detection scheme. The
authors used a genetic algorithm for feature selection. They
tested the proposed methods on IEEE 14-, 39-, 57- and 118-
bus systems using MATPOWER generated data.

Yang et al. [19] used one-class SVM (OCSVM), robust
covariance, ISOF and local outlier factor (LOF) methods.
They ran these methods using data from a simulated IEEE
14-bus system. However, the dataset used has only 1000 set
of measurements. They reported only accuracy and precision
values for the algorithms which can be misleading metrics for
anomaly detection. The most relevant metrics for sparse attack
detection are sensitivity or recall, specificity, and F1-score.

Hao et al. [20] used a sparse PCA-approximation based
method to detect SFDIA. Identification of real measurements
with the availability of sparse datasets is achieved by using
recovery functions. The recovery function’s accuracy is in-
versely proportional to the sparsity of available data. As such,
this model falls short in identifying SFDIA when data is too
sparse to produce reliably accurate recovery functions. They
evaluated their approach on IEEE 9-, 14-, and 57-bus systems
simulated with MATPOWER.

Chaojun et al. [21] used the Kullback–Leibler distance
(KLD) to calculate the distance between two probability
distributions derived from variations in measurement data.
When SFDIA are introduced into the measurement matrix,
the probability distributions of the measurement variations will
deviate from the historical data, thus leading to a larger KLD.
If this deviation is larger than a threshold value then it will
detect presence of SFDIA.

Ashrafuzzaman et al. [22] developed a scheme that used an
ensemble of supervised methods and another ensemble of un-
supervised methods. In the unsupervised ensemble, they used
OCSVM, elliptic envelope, ISOF, and LOF. The ensemble-
based approach gave a detection rate of 72% with a false
alarm rate of 3%. They tested the scheme using simulated
dataset from an IEEE 14-bus system. The main drawback of
the scheme was that it takes a lot of time to train.

From the discussion above, we can see that there had been
only a few works based on unsupervised learning to detect
SFDIA on the state estimation in power transmission systems.
In our work we are investigating the efficacy of elliptic
envelope method and also determining the hyper-parameter
value for optimized performance. We are also using RFC
to reduce the feature dimensionality for speedy training and
possible improvement in detection performance.



III. STEALTHY FALSE DATA INJECTION ATTACKS ON
STATE ESTIMATION

This section briefly describes the state estimation process
in power transmission system and the SFDIA on SE.

A. State Estimation in Power Transmission Systems

State estimation is an important part of the energy manage-
ment systems (EMS) at power transmission control centers.
Measurement data, e.g., power flows, voltage magnitudes, and
power injections, from all the buses in the system are collected
by the EMS via SCADA system. Using these measurement
data, SE computes the best estimation of the values of the
system’s unknown state variables, i.e., voltage magnitudes
and phase angles for all of the different buses [4]. SE is
run every few seconds to a few minutes. SE identifies and
corrects contamination in the data, removes any bad data that
emanate randomly from communication errors, and refines the
measurements. Finally, SE provides a set of values for the state
variables that are acceptable to the operator. These values are
then used as inputs to other computational programs within
EMS including optimal power flow, contingency analysis, unit
commitment, and locational marginal pricing [23].

B. Stealthy False Data Injection Attacks on State Estimation

The SE process uses a residual-based approach to detect any
anomaly or corruption in the measurement data. This residual
is the difference between measurements from the sensors and
the corresponding estimated values at the power control center.
The residual should be zero under ideal condition which is
seldom the case and a residual within a small threshold value is
acceptable by the system. If the residual is above this tolerance
limit then the presence of random errors due to disturbances in
communication channels or sensor malfunctions are assumed.
In this case, either the erroneous values are adjusted or the set
of measurement data is discarded and the next set of data is
analyzed.

If the change in measurement data, which may include
falsely injected data by a cyber-attacker, causes the residual
to be above the threshold, then those modifications are caught
by the bad-data detector as part of the SE. However, if the
attacker has knowledge of the power system topology, then
they can modify the measurement values in such a way that the
residual remains within the threshold. Obviously, these attacks
will not be identified by the bad-data detector. These attacks
that cannot be detected using the conventional methods based
on residual analysis are called stealthy FDI attacks [3].

In executing an SFDI attack, the attacker first compromises
the power transmission system’s communication network and
figures out the topology of the system. Then they compromise
one or more of the sensors in the RTUs, and modify some
of the measurements in a way that the changes will not be
discerned by the SE process. The SE process will assume that
the data is valid and will compute the state variables based on
this data. The power control center operators will work with
these variables and will inadvertently cause malfunctions or
disruptions in the grid.

Fig. 1. The process flow diagram of the elliptic envelope based SFDIA
detection scheme.

IV. ELLIPTIC ENVELOPE BASED DETECTION OF
STEALTHY FDI ATTACKS

This section provides an overview of the unsupervised el-
liptic envelope based SFDIA detection scheme. The schematic
diagram depicting the process flow is given in Figure 1. The
synthetic state estimation measurement data is normalized
using standard scaling. Then, the dataset is split into training
and testing subsets. For training phase, we employ random
forest classifier (RFC) for feature reduction, and then train
the model using elliptic envelope method. During the testing
phase, the test data is also feature-reduced using RFC and then
the model trained by elliptic envelope method is used to detect
anomalous data indicating occurrence of an attack.

A. Feature Selection using Random Forest Classifier Method

The complexity and time for model training increase sharply
with increase in number of features in the dataset, because of
the so-called “curse of dimensionality” [24]. The number of
data items, i.e., features, in SE measurement data increases
with the number of buses in the system. For example, the
number of features in the measurement data for an IEEE 9-
bus system is 27, for an IEEE 14-bus system it is 122, and
for an IEEE 300-bus system it is 1122.



It is often observed that not all the features in a dataset
contribute equally in training the models. Hence, the fea-
tures with the least discriminating properties can be safely
eliminated from the dataset without compromising the model
performance. Feature selection may lead the trained model
to maximizing its performance while minimizing its running
time.

In this scheme, we use random forest classifier (RFC) [25]
to rank and select the features in the SE measurement dataset
according to their importance in model training. Random forest
is an ensemble of a large number of decision trees. Each node
in the trees represents a condition on a single feature in the
dataset. The dataset is split into two depending on the response
to the condition. Instances with same responses end up in the
same set. A measure of how much each feature contributes in
making this decision is taken at the time of the split. This
measure is used in ranking the features according to their
contribution or importance. Then, the most important features
are retained while the others are discarded from the dataset to
obtain a feature-reduced dataset.

B. Attack Detection using Elliptic Envelope Method

In this scheme, unsupervised machine learning method
elliptic envelope is used as an anomaly detector to diagnose
SFDIA on state estimation in power transmission systems. The
elliptic envelope method models data as a high dimensional
Gaussian distribution with possible covariances between data-
features. It attempts to delineate an ellipse so that majority of
the data instances fit into the ellipse. Data instances lying far
outside the ellipse are then considered anomalies or outliers
and, for the current context, are marked as an attack.

The elliptic envelope method uses the FAST-minimum co-
variance determinant (FAST-MCD) [26] to estimate the shape
and size of the ellipse. The FAST-MCD algorithm selects
non-intersecting sub-sets of data and computes the mean µ,
and the covariance matrix C, in each data-feature for each
sub-set. The Mahalanobis distance, dMH , a measure of the
distance between a point P and a distribution D, is computed
for each multidimensional data vector x, in each sub-set
and the data are ordered in ascending order by dMH . The
Mahalanobis distance obtained from this estimate is used to
define the threshold for determining outliers or anomalies. The
Mahalanobis distance is defined by Mahalanobis [27] as:

dMH =
√

(x− µ)TC−1(x− µ) (1)

where C is the covariance matrix. If the covariance matrix
is the identity matrix, then dMH reduces to the Euclidean
distance and to the normalized Euclidean distance if the
covariance matrix is diagonal. In essence, the Mahalanobis
distance measures how many σ (standard deviation) a data
point is from the mean of a distribution. The FAST-MCD
algorithm selects sub-sets from the original dataset, with small
values of dMH . Then computes mean, covariance, and the
values of dMH of the sub-sets. This procedure is iterated
until the determinate of the covariance matrix converges. The

covariance matrix with the smallest determinate from all sub-
set forms an ellipse which encloses majority of the data.

In this paper, we used an implementation of elliptic envelope
method provided by the scikit-learn Python package [28].

V. EXPERIMENTS AND RESULTS

This section presents an experiment with the proposed
approach that uses RFC for feature selection and elliptic
envelope for anomaly detection, and discusses the results.
This experiment evaluates the performance of the proposed
detection scheme.

A. Attack Model

In this experiment, SFDIA targeting the static AC state
estimation are considered. The attacker is assumed to be
capable of changing the communicated data such as voltages,
currents and power magnitudes in the measurement matrix.
The adversary needs only selected partial knowledge of the
network topology to allow them to generate a stealthy attack
on a single bus. The considered attack model assumes that
only one fixed bus is targeted for the entire duration of an
attack.

B. Simulation and Data Generation

We used simulation of the standard IEEE 14-bus system,
as shown in Figure 2, for generating data. The measure-
ments are obtained from solving power flows using the
MATPOWER toolbox [30] and adding Gaussian measurement
noise. The measurements are 40 active power-flows, 14 active
power-injections, 40 reactive power flows, 14 reactive power-
injections and 14 voltage magnitudes giving a total of 122
measurements comprising the feature set. The dataset consists
of 100,000 sets of measurement data.

C. Data Preprocessing

The synthetic dataset did not have any missing data or
invalid data; so we did not have to perform any data cleaning.

Fig. 2. Diagram of a standard IEEE 14-bus system (adapted from [29])
showing an attack that targets bus number 4.



However, we applied standard scaling to normalize the data
by scaling the values in one feature to unit variance.

The dataset generated contains 90% “normal” data and 10%
“attack” data implying that the dataset is imbalanced. Since the
unsupervised models function as outlier or anomaly detectors,
the dataset did not need balancing.

D. Feature Selection

We used the random forest algorithm on the dataset to order
the features according to their contribution levels in training
the machine learning model learn the data characteristics. The
first 21 features in the ordered feature list have the largest
variances, and therefore only these features were retained in
the dataset as the predictor variables and the other features are
discarded.

E. Model Training

To find an optimized elliptic envelope model, we trained
the model with varying values for the hyper-parameter “con-
tamination rate”. Contamination rate represents the proportion
of anomalies or outliers in the dataset. The contamination
rate describes approximately how much of the data instances
should sit outside of the enclosing high-dimensional ellipse
that contains the majority of the data instances. In this exper-
iment, the values of contamination rate was started at 0.001
and was gradually increased to 0.5.

To validate the effectiveness of elliptic envelope in detect-
ing the stealthy FDI attacks, we have trained and evaluated
four other popular unsupervised anomaly detection methods,
namely one-class SVM with linear kernel (OCSVM L), one-
class SVM with polynomial kernel (OCSVM P), isolation
forest (ISOF) and local outlier factor (LOF).

The dataset was split in 7:3 ratio into training subset and
test subset retaining the same distribution of normal and attack
data. To obtain robust models without over-fitting, we used
10-fold cross-validation over randomly divided sub-sets of
training data during training of the models. Then we used the
test data for prediction and for measuring model performance.

F. Evaluation Metrics

Six metrics were used to evaluate the performance of the
method. Accuracy is the percentage of true identification of
both normal and attack instances over total population. Pre-
cision, also known as the positive predictive value, represents
how often the model correctly identifies an attack. Sensitivity,
also known as Recall, true-positive rate, or detection rate,
indicates how many of the attacks the model does correctly
identify. Sensitivity intuitively gives the ability of the model
to detect all the attacks and precision gives the ability of
the model not to mark a non-attack as an attack. F1-score
provides the weighted average of precision and sensitivity.
False positive rate is the rate at which the model misidentifies
a non-attack as an attack and thereby raises a false alarm.
Specificity is the inverse of FPR and measures the proportion
of actual negatives or non-attacks that are correctly marked as
negatives.

In an anomaly detection problem where the goal is to detect
the minor class occurrences, the most important metrics are
F1-score and sensitivity which, in our case, measures the
proportion of “attacks” that are correctly identified as such
and the FPR which measures the proportion of “non-attacks”
that are incorrectly identified as “attacks” raising a false alarm.

The evaluation metrics are defined as [31]:
1) Accuracy = (TP + TN)/Total
2) Precision = TP/(FP + TP )
3) Sensitivity = TP/(FN + TP )
4) False Positive Rate (FPR) = FP/(FP + TN)
5) Specificity = TN/(FP + TN) or (1 - FPR)
6) F1-Score = 2TP/(2TN + FP + FN)

where 1) True positive (TP): when the model correctly
identifies an attack instance, 2) True negative (TN): when it
correctly identifies a normal or non-attack instance, 3) False
positive (FP): when a non-attack is incorrectly identified as an
attack instance, and 4) False negatives (FN): when an attack
is incorrectly identified as a non-attack instance.

In addition to these six metrics, the receiver operating
characteristic (ROC) curve’s area under the curve (AUC) score,
a measure of the diagnostic ability of binary classifier systems,
is reported. The ROC curves are plotted to demonstrate the
detection performance of different models over all possible
thresholds. The ROC curve is a graph of false positive rate
(FPR) versus true positive rate (TPR).

The run times (i.e., elapsed times) for training the models
were measured for comparing the speed of different mod-
els running the all-feature dataset versus the reduced-feature
dataset.

G. Discussion of Results

In this section we present and discuss the results from the
experiment in terms of the evaluation metrics.

We trained the elliptic envelope model with different con-
tamination rates. The line-graph in Figure 3 shows the effect

Fig. 3. Plot showing the effect of contamination rate on model performance.



TABLE I
EVALUATION METRICS VALUES FOR THE MODELS USING THE TEST DATASET WITH 21 FEATURES.

ROC Elapsed Time (in seconds)
Models F1-Score Accuracy Precision Sensitivity FPR Specificity AUC 21 Features 122 Features

OCSVM P 0.0557 0.4702 0.0332 0.1716 0.4998 0.5002 0.3358 283.16 7962.59
OCSVM L 0.2948 0.6455 0.1800 0.8133 0.3713 0.6287 0.7210 692.14 2799.61
LOF 0.1025 0.7192 0.0723 0.1760 0.2262 0.7738 0.4748 326.25 3047.92
ISOF 0.2488 0.5318 0.1457 0.8514 0.5002 0.4998 0.6756 562.87 1919.34
EE 0.7181 0.9432 0.72.86 0.7259 0.0204 0.9796 0.7897 14.39 45.20

of contamination rate on the model performance. The models
were trained with the dataset after the features were reduced
to 21 from 122 using the random forest classifier. The per-
formance numbers are gathered when the models were tested
using the test dataset. We started with a contamination rate of
0.001. At this point, the accuracy and precision values are high
but the most important metrics for anomaly detection, namely
sensitivity and F1-score, are close to zero. With increasing
contamination rates, F1-score and sensitivity increase with
decreasing precision. The lines for F1-score, sensitivity and
precision meet together at the 0.03 contamination rate value.
This is the maximum point for both accuracy and F1-score.
After the cross-over point at 0.03, sensitivity value increases
but both F1-score and precision go down. Therefore, we can
say that the best hyper-parameter value for contamination rate
is 0.03, i.e., the model is most robust with 0.03 contamina-
tion rate. At this point, the values of F1-score is 72%, and
sensitivity and precision is 73%, which means that the best
optimized elliptic envelope model can reliably detect 73%
of attacks, and will raise a false alarm only 2% times. The
corresponding accuracy of the model is 94.32% and ROC AUC
is 79%. This demonstrates that the fine-tuned model is robust,
reliable, accurate and fairly strong in its detection capability.
The model takes an average of 14 seconds to train with 70,000
data samples using 10-fold cross validation.

To give a comparative study of how the elliptic envelope

Fig. 4. Performance comparison for the five unsupervised models.

model performs compared to other popular anomaly detec-
tion models, we trained and tested four unsupervised models
mentioned above. We trained these models using the feature-
reduced dataset with 21 features. The performance data is for
testing with the trained models. Table I and the corresponding
line-graph in Figure 4 show the values for the evaluation
metrics for the five unsupervised models for the 21-feature
dataset. They show that the elliptic envelope model out-
performs the other four models in accuracy, precision, F1-score
and specificity. ISOF has better sensitivity value than elliptic
envelope. But the F1-score, precision, and specificity are very
poor for ISOF; hence the model is neither robust nor reliable,
and has an exorbitantly high false alarm rate of 50%.

In an additional experiment, the dataset with all 122 features
were used for training the five models. It was observed that
the performance numbers do not improve or degrade when
the models are trained with 122 features. However, as shown
by columns 9 and 10 of Table I, training with a full-feature
dataset takes an average of 400% more time compared to the
training time using only a 21-feature dataset.

Figure 5 shows the ROC curves for the five models. ROC
curve plots false positive rate versus true positive rate. The
curve corresponding to elliptic envelope has the highest AUC
value of 0.79 followed closely by OCSVM L with 0.72.
OCSVM P and LOF perform worse than random.

Fig. 5. ROC curves for the five unsupervised models.



VI. CONCLUSION

Stealthy false data injection attacks on the state estimation
of a power transmission system can have severe consequences.
Early, accurate and precise detection of these types of at-
tacks are critical to prevent significant economic losses and
potentially catastrophic outages. In this paper, we developed
and tested a scheme for detecting SFDIA using an unsuper-
vised machine learning method, namely elliptic envelope. We
implemented the scheme using the Python machine learning
libraries and tested it using a synthetic dataset from the
simulation of standard IEEE 14-bus system by MATPOWER.
We fine-tuned the elliptic envelope model for best performance
using different contamination rates and found that the model
performs best with a contamination rate of 0.03. The best
model can correctly and reliably detect 73% of the attacks
and will falsely raise an alarm at a rate of only 2%. We also
compared the performance of elliptic envelope model with four
other unsupervised models and found that elliptic envelope
out-performs the other four.
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