
Empirical Evaluation of the Ensemble Framework for
Feature Selection in DDoS Attack

Saikat Das, Deepak Venugopal, and Sajjan Shiva
Department of Computer Scinece

The University of Memphis
Memphis, TN, USA

{sdas1, dvngopal, sshiva}@memphis.edu

Frederick T. Sheldon
Department of Computer Science

University of Idaho
Moscow, ID, USA

sheldon@uidaho.edu

Abstract— Over the past two decades, Distributed Denial of
Service (DDoS) attacks have been responsible for most of the
catastrophic failures in the Internet causing a huge amount of
disruption of services across all sectors of the economy. Almost
every year this attack scores top among all other attacks in terms
of the cost to the overall global economy. Machine Learning (ML)-
based Intrusion Detection Systems (IDSs) heal the global economy
with the goal of reducing the prevalence of cyber incidents, such
as DDoS. In an ML classification problem, the feature selection
process, aka feature engineering, is treated as a mandatory pre-
processing phase that potentially reduces the computational
complexity by identifying important or relevant features from the
original dataset and results in the overall improvement of
classification accuracy. In this paper, we propose an ensemble
framework for feature selection methods (EnFS) that combines
the outputs of seven well-known feature selection methods using
the majority voting (MV) technique and produces an optimal set
of features. In the evaluation of the proposed framework, an
extensive experiment was performed using the intrusion detection
benchmark dataset NSL-KDD [1]. Furthermore, using the optimal
feature set, we have experimented with ensemble supervised ML
framework [2] for the same dataset that demonstrated the efficacy
of our approach by producing greater accuracy and negligible
false alarms compared to existing approaches.

Keywords—Feature selection, Ensemble Feature Selection,
EnFS, DDoS, Intrusion Detection System, Machining Learning,
Ensemble Machine Learning.

I. INTRODUCTION

Cybersecurity has become a very serious problem not only
for national security but also for organizations. Traditionally,
attackers leverage the vulnerabilities to exploit the new and
unprecedented opportunities that are available to them to profit
from and/or disrupt e-commerce. For example, Cybersecurity
Ventures estimates that the economic loss due to cybercrime,
will soon reach the level of $6 trillion annually by 2021 [3].
Distributed Denial of Service (DDoS) is one of the infamous
cyber-attacks through which intruders render the victim server’s
bandwidth, services, and resources unavailable to a legitimate
user. According to the Worldwide Infrastructure Security Report
[4], the DDoS attack has already reached 1.7 Terabyte per
second in 2018, and is dominating the cyber-attack arena.

In response, to mitigate the severity of these attacks,
Intrusion Detection Systems (IDSs) are being used in ways to
scrutinize attempted attacks anticipating that there will be follow
on attempts. Machine Learning (ML) based techniques are being

employed thereby to incorporate active intelligence and make
detection more effective in countering such attacks. Combining
ML into IDS can improve the accuracy, reliability, and
resiliency of networked public facing information
infrastructures compared with standard signature-based IDSs.
Feature Selection (FS) methods used in the pre-processing phase
have the greatest potential to improve the performance of ML
classifications when combined with IDSs. FS uses various
techniques to extract a subset of features within the data to better
discriminate between classes resulting in needing fewer features
and less processing time. Thus, features that do not help to
discriminate the class are eliminated because they do not
contribute to the models’ prediction. FS methods can be
classified into three categories, namely (1) filter-based, (2)
wrapper-based, and (3) embedded methods. Here, we subsume
all three types of methods within our proposed framework by
combining them in a way that eliminates the inherent bias and
drawbacks when used individually.

The contribution of this study includes the stepwise process
as well as an empirical validation using the NSL-KDD dataset
to evaluate our approach in the case of DDoS attack detection.
Recent studies show that ensemble technique for feature
selection improves the performance of models in several ways
by i) removing non-discriminating features, ii) identifying
important features which have a high correspondence with the
target class [5], iii) finding some features that produce weak
performance individually, and strong performance when used in
a group [6], etc. In this research, we propose an ensemble
framework EnFS that combines seven FS methods using the
majority voting (MV) technique. The EnFS framework codifies
a systematic and repeatable method that provides better results
(prediction accuracy) in less computational time (more
efficient), and maintains such benefits as reducing overfitting,
reducing classification and training time, etc. Furthermore, an
extensive set of experiments have been conducted with fifteen
different FS methods. Using a grid-search algorithm, we chose
the best seven methods from the various selection method
categories. Then, by using the reduced feature set obtained from
the EnFS framework, we performed data classification with our
previous supervised ensemble ML framework [2] to identify the
best performances. Consequently, using the well-known NSL-
KDD dataset, we could clearly demonstrate that the subset of
features produced by our ensemble approach (i.e., EnFS) yields
better accurate results. This was true for several different
classification methods as compared to using a single FS criterion
or without using any FS method.

56

2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom)

978-1-7281-6550-9/20/$31.00 ©2020 IEEE
DOI 10.1109/CSCloud-EdgeCom49738.2020.00019

The remainder of the article is organized as follows: In
Section II, we review several FS methods within this problem
domain. Section III briefly describes the FS methods used in the
proposed framework. The EnFS framework is presented in
Section IV. The EnFS validation experiments are presented with
the ensemble supervised classification model using the NSL-
KDD dataset in Section V. The results of the experiments are
further discussed in Section VI. In Section VII, we present some
conclusions and future aspirations.

II. LITERATURE REVIEW

Machine Learning (ML) algorithms focus on the
development of computer programs where they provide the
systems with the ability to automatically learn and improve from
experience without the intervention of humans and without
being explicitly programmed. The feature selection (FS) process
is one of the vital ML pre-processing phases where it removes
unwanted and irrelevant features with the goal of improving
prediction (i.e.; detection) accuracy and reducing computational
complexity.

Dash and Liu [7] mentioned four basic procedures in a FS
method. The procedures are generation, evaluation, stopping,
and validation. Various support vector machine (SVM) models
with NSL-KDD dataset [8], genetic-fuzzy rule mining approach
[9], genetic algorithm approach [10], mutual information-based
[11] techniques, filter-based methods [12], etc. were used in
feature selection process for intrusion detection systems. Several
FS methods are also found in detecting DDoS attacks such as
detecting DDoS in cloud computing [8][13], detecting robust
backscatter DDoS [14], chi-square and information gain FS
methods [15] in detecting general DDoS attacks, etc. In addition,
supervised [2] and unsupervised [16] ensemble frameworks
were also used to detect DDoS attacks with better accuracy.

A significant number of surveys and taxonomies of FS
methods are found from the recent research. Chandrashekar and
Sahin [17] conducted a detailed survey on various FS methods
using the DARPA dataset. A taxonomy and survey on semi-
supervised FS methods were accomplished by Sheikhpour,
Razieh, et al. [18] using several datasets. Khalid, Samina et al.
[19] performed a brief survey on well-known FS methods to
check the suitability of different FS and feature extraction
techniques in certain situations based on experiments. A survey
of various selection algorithms that helps decide which
algorithm to use in certain situation [20], a FS survey for
gaussian mixture models and hidden Markov models [21],
taxonomy of FS algorithms in intrusion detection systems [22],
etc. are found to depict the state-of-the-art of FS methods.

From the above studies, most of the researchers other than
Osanaiye, Opeyemi, et al. [5], provided either a detailed survey
of FS methods in general and/ or specific research areas, or
implemented various FS methods with several types of datasets.
None of them mentioned combining several selection methods
and demonstrated their outcomes. Osanaiye, Opeyemi, et al. [5]
used an ensemble based multi-filter (only filter-based) selection
method although, they did not consider the other two types of
selection methods (i.e.; wrapper-based and embedded). In this
research, we propose an ensemble framework for feature
selection methods (EnFS) where all three types of methods are
used and combined using a majority voting technique to extract

a valid minimal subset of features that improves the performance
of DDoS detection problem.

III. FEATURE SELECTION METHODS

We consider a high dimensional dataset with ݊ data
instances and ݉ columns (e.g.; features) i.e.; the data matrix is Χ ∈ ℝ௡×௠, and a target variable (level) is ݕ. A target variable
can be either continuous or discrete. A feature selection (FS)
algorithm selects a subset of ݌ ≪ ݉ features i.e.; Χs ∈ ℝ௡×௣,
where ݌ features are most relevant to the target variable ݕ [23].
The subsequent sections discuss briefly three major categories
of FS methods and the corresponding FS methods that fall under
each category.

A. Filter-based Methods
Filter-based methods utilize the underlying statistical

characteristics of the input data during ML model training time.
A correlation value between the feature and the target variable
is calculated for each feature. A general filter-based FS process
can be accomplished by selecting the features for which the
correlation value exceeds a threshold value [23].

a) Pearson’s Correlation: Pearson correlation
coefficient (ݎ) is a statistical measurement that calculates the
linear correlation between two random variables ݔ and ݕ using
the formula in (1). The value of Pearson's ݎ can be +1, 0, or −1;
where +1 denotes a positive linear correlation, 0 denotes no
linear correlation, and −1 denotes a negative linear correlation
[24]. ݎ = ∑(௫ି௫̅)(௬ି௬ത)ඥ∑(௫ି௫̅)మା∑(௬ି௬ത)మ

b) Chi-Square: In a contingency table, Chi-Square test
determines the relationship between two or more random
variables i.e.; tells how much difference exists between
observed frequencies and expected frequencies, while
assuming no relationship among the data instances using the
formula in (2). The test statistic is computed from a ߯௖ଶ
distribution in order to make the null hypothesis true by
evaluating how close the observed and expected frequency
values are [25]. ߯௖ଶ = ∑ (ை೔ି ா೔)మா೔

where, ௖ࣲଶ is the chi-square distribution with ܿ degrees of
freedom, and ܱ and ܧ are the observed and the expected values,
respectively. If the chi square test statistic is very small, it means
that the observed data fit very well with the expected data i.e.;
both data have a relationship. Otherwise, the observed data don’t
fit well with the expected data i.e.; there is no relationship
between these two datasets.

c) Mutual Information: The measurement of the mutual
information between two random variables ܺ and ܻ can be
obtained by doing the reduction in uncertainty for one random
variable, given that the other random variable’s value is already
known using the formula in (3).

57

;ܺ)ܫ ܻ) = ∫ ௑ ∫ ,ݔ)݌ (ݕ log ௣(௫,௬)௣(௫)௣(௬) ௒ ݕ݀ݔ݀
where, ,ݔ)݌ (ݕ denotes the joint probability density function

of two random variables ܺ and ܻ . The marginal density
functions of two random variables ܺ and ܻ are (ݔ)݌ and (ݕ)݌,
respectively. When two random variables ܺ and ܻ are
independent, the joint probability density function is equal to the
product of two marginal density functions, i.e.; ݔ)݌, (ݕ (ݕ)݌ (ݔ)݌= which results in the value of the integration (equation
(3)) to become zero. So, the stronger relationship between two
random variables is determined by the larger value of the
integration.

B. Wrapper-based Methods
Wrapper-based methods exploit an ML algorithm to

evaluate the goodness of features, and the FS process is
accomplished by the means of a search problem where different
combinations are exhaustively prepared, evaluated, and
compared with other combinations.

a) Recursive Feature Elimination: In Recursive Feature
Elimination (RFE), the process starts with initializing the
predictors with a rank that comes from an initial measure of
importance. The very first model is built using the complete set
of predictors. Then a smaller set of predictors is used to build
the next model, where the smaller set is obtained by removing
the least important ones. This process (extracting a smaller set
of predictors and building a model) continues recursively to a
defined way until a minimum number of predictors are
remained.

C. Embedded Methods
Several algorithms are used in embedded methods, and they

have built-in mechanisms for selecting certain features which
are executed during model training time i.e.; the FS process can
be completed within the construction of ML algorithms. With its
own variable, an ML model performs feature selection as well
as classification/regression at the same time.

a) LASSO Regression: Least Absolute Shrinkage and
Selection Operator (LASSO) is a regression analysis that is often
used as a FS method. To accomplish the FS process, LASSO
method performs L1 regularization through which it assigns a
constraint on the sum of absolute values of the model parameters
and penalizes the regression variable’s coefficient by shrinking
some of the variables towards zero. After the regularization
process, the features having zero values on their regression
coefficient are eliminated. Then, a new subset of features can be
constructed with the features having non-zero regression
coefficients which have strong association with the target
variable [26].

b) Logistic Regression (LR) with L1 Penalty: From the
statistical point of view, LR models are used to model the
probability of an existing class or event, such as
normal/abnormal, pass/fail, win/lose, hot/cold, etc. Using L1
regularization in LR, each non-zero coefficient is added as a
penalty that forces weak feature coefficients to have a zero
value. Here, FS is performed by producing sparse solutions.

c) Random Forests: Random Forests are formed with four
to twelve hundred decision trees where each of the trees is built

over a random extraction of the observations from the dataset
and a random extraction of the features. These trees are
uncorrelated since they can’t access all features or all
observations and therefore less prone to overfitting. Each of the
trees is constructed by a sequence of simple yes/no questions
based on a single or combination of features. Based on the
answers (yes/no), the tree divides the dataset into two buckets;
observations that are most likely similar among themselves are
put into one bucket, whereas the dissimilar ones are put into
another bucket. The importance of each feature is measured
based on the purity of each bucket [27].

IV. PROPOSED FRAMEWORK

This section provides an overview of our proposed
ensemble framework EnFS. The detailed architectural diagram
depicting the process flow is given in Fig. 1. It shows the
processing phases, namely a) data preprocessing, b) feature
selection, c) ensemble selection methods and d) model
classification with performance analysis of the detection.

Fig. 1. Process flow of the Ensemble Feature Selection Methods Framework
(EnFS)

A. Data Preprocessing
There are various subtasks that must be done in a data

preprocessing phase, like removing unwanted data, data
conversion, scaling, removing invalid data, etc. The detail of
data preprocessing is described in Section V-B.

B. Feature Selection using Individual Methods
Selecting the right feature and right number of features

could lead the classification model to its cherished goal. Feature
selection (FS) phase is one of the crucial phases of model
classification which can be done by various inbuilt mechanisms
or by using domain knowledge. In this proposed framework, we
have used seven FS methods (described in Section III)
individually to experiment with NSL-KDD dataset and to
extract a minimal number of features from each of the methods.

C. Ensemble Selection Methods
The goal of the FS methods is to extract a minimal set of

features, and using that feature set, ML models can produce
better outcomes in different types of classification problems.
Using a single selection method may not always produce valid
or an accurate number of features, therefore, outcomes from
multiple selection methods are likely more trustworthy.
Ensembling (combining multiple selection methods) is the
primary goal of this work depicted here in this phase to obtain

58

valid, a more accurate feature set and to produce a higher
accuracy and detection rate in DDoS attack detection problems
using the extracted feature set.

D. Model Classification
In this phase several ML models are considered and

analyzed to evaluate the accuracy of the feature set that are
obtained from the previous section. The detail of model
classification is described in Section V-D. In addition, we
experimented with full features (i.e.; no FS methods were
applied) to compare the results and to validate that the FS
process is necessary.

V. EXPERIMENTS

This section presents a set of experiments and their details
using our proposed EnFS framework.

A. Dataset
The NSL-KDD dataset is used in this experiment which was

created by curating the well-known KDD’99 dataset [28]. The
dataset consists of 41 predictor attributes and 1 target attribute
which indicates that if the corresponding set of predictor
attributes can be any of 39 attacks [1]. These attacks fall under
four main attack categories: DDoS, U2R, R2L or probe type
attacks. Out of these 39 attacks, 10 of them are DDoS type
attacks, namely back, land, neptune, pod, smurf, teardrop,
apache2, mailbomb, processtable, and udpstorm. To experiment
with the NSL KDD dataset, we used 113268 data instances for
training purpose and 17164 data instances for testing purpose.

B. Data Preprocessing
In the NSL-KDD dataset, there are some text-based

categorical variables, namely protocol type, service, and flag
data. For data classification, these variables are converted into
numeric values by label-encoding, i.e., by converting to integer
based categorical variables. This creates a binary column for
each category and returns a sparse matrix or dense array. Since
the data in each column are varied within a different range, we
used a couple of scaling mechanisms (e.g.; Standard and Min-
Max) to normalize the data. The standard scaling standardizes
features by removing the mean and scaling to unit variance. On
the other hand, Min-Max scaling transforms features by scaling
each feature to a given range(e.g.; 0 to 1).

C. Feature Selection
In this section, we have performed two layers of

experiments. Initially, seven selection methods are chosen from
among fifteen selection methods based on accuracy,
performance, and other metrics using a manual grid search
algorithm. The search algorithm selected all three types (filter-
based, wrapper-based and embedded methods) of selection
methods. We have selected the top seven FS methods from
among fifteen that produced the best results. After completing
method selection, seven FS methods were used individually to
extract the features, where each of the methods selected a
different subset of features. Subsequently, the majority voting
(MV) technique is used to ensemble all seven methods. Finally,
a combined subset of features is extracted that was further used
in data classification.

D. Model Classification
We utilized our ensemble supervised classification

framework (from previous research [2]) to evaluate the models’
performances using the feature set obtained from the previous
sub-section V-C. For the supervised ensemble framework,
Support Vector Machine (SVM), Naive Bayes (NB), Decision
Tree (DT), Neural Network (NN), and Logistic Regression (LR)
were used for individual data classification, and on top of those
classifications another layer of classification was performed to
ensemble them. We have used various ensemble techniques, like
Majority Voting (Ens_MV), Logistic Regression (Ens_LR),
Naive Bayes (Ens_NB), Neural Network (Ens_NN), Decision
Tree (Ens_DT), and Support Vector Machine (Ens_SVM). All
these methods and the framework were used here to analyze the
efficacy of the DDoS classification problem using the feature set
obtained from this research.

VI. RESULTS AND DISCUSSION

In this section, we describe evaluation metrics used to
evaluate the accuracy of the framework. In addition, the results
obtained from several experiments are illustrated in detail.

A. Evaluation Metrics
Accuracy, Precision, Recall, F-1 Score, and False Positive

Rate are the evaluation metrics that we have used to measure the
performance for the classification models. These metrics are
defined by four measurements: True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN). In
addition, Receiver Operating Characteristics (ROC) curve is a
probability curve that was used to evaluate the models based on
TPR and FPR. Generally, a ROC curve is plotted with True
Positive Rate (TPR) (in y-axis) against the False Positive Rate
(FPR) (in x-axis). In anomaly detection, the higher the ROC, the
better the model is at distinguishing anomalous traffic.

B. Discussion of Results
Experimental results performed by the EnFS along with

seven FS methods are analyzed here. The goal of this experiment
is to extract important features using several selection methods
as well as find the exact number of features after combining all
these methods using ensemble technique (i.e.; MV). Table I
shows the features that were extracted from seven FS methods.

TABLE I. EXTRACTED FEATURES FROM SEVEN FS METHODS

F# Method Extracted Features

F#1 Pearson
Correlation

['dst_host_rerror_rate',
'dst_host_srv_diff_host_rate', 'srv_diff_host_rate',
'service', 'dst_host_count', 'flag', 'logged_in',
'count', 'dst_host_srv_count',
'dst_host_same_srv_rate', 'serror_rate',
'srv_serror_rate', 'dst_host_serror_rate',
'dst_host_srv_serror_rate', 'same_srv_rate']

F#2 Chi-Square ['service', 'flag', 'logged_in', 'count', 'serror_rate',
'srv_serror_rate', 'srv_rerror_rate', 'same_srv_rate',
'srv_diff_host_rate', 'dst_host_count',
'dst_host_srv_count', 'dst_host_same_srv_rate',
'dst_host_serror_rate', 'dst_host_srv_serror_rate',
'dst_host_rerror_rate']

F#3 Mutual
Information

['service', 'flag', 'src_bytes', 'dst_bytes',
'same_srv_rate', 'diff_srv_rate']

F#4 LASSO ['duration', 'protocol_type', 'wrong_fragment',
'logged_in', 'srv_count', 'srv_serror_rate',

59

'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate',
'dst_host_srv_diff_host_rate']

F#5 Logistic
Regression
with L1
Penalty

['duration', 'protocol_type', 'flag',
'wrong_fragment', 'hot', 'root_shell',
'num_file_creations', 'is_guest_login', 'count',
'srv_count', 'srv_serror_rate', 'srv_rerror_rate',
'dst_host_srv_count', 'dst_host_same_srv_rate',
'dst_host_srv_diff_host_rate']

F#6 Random
Forests

['service', 'flag', 'dst_bytes', 'count', 'serror_rate',
'srv_serror_rate', 'same_srv_rate', 'diff_srv_rate',
'dst_host_srv_count', 'dst_host_diff_srv_rate',
'dst_host_serror_rate', 'dst_host_srv_serror_rate']

F#7 Recursive
Feature
Elimination

['duration', 'protocol_type', 'flag',
'wrong_fragment', 'hot', 'logged_in',
'is_guest_login', 'count', 'srv_count',
'srv_serror_rate', 'srv_rerror_rate',
'dst_host_srv_count', 'dst_host_same_srv_rate',
'dst_host_srv_diff_host_rate',
'dst_host_serror_rate']

The majority voting (MV) technique (i.e.; a feature can be
selected if more than half of the methods select it) is used here
to ensemble all seven selection methods’ output. Since seven
selection methods are used in this research, ensemble framework
selects those features who have been selected by any four of the
seven methods.

Table II enumerates that EnFS selects 11 features, and each
of the features is demonstrated in a form of ✓ or ✕ mark that
shows the selection by individual methods. In addition, a score
card counter is added to support the MV technique (i.e.; Total
Count)

TABLE II. SCORE CARD: EXTRACTED FEATURES USING ENSEMBLE
FEATURE SELECTION FRAMEWORK (ENFS).

Feature Name

Pe
ar

so
n

Ch
-S

qu
ar

e

M
ut

ua
l I

nf
o

LA
SS

O

LR
-L

1

RF FR
E

To
ta

l C
ou

nt

srv_serror_rate ✓ ✓ ✕ ✓ ✓ ✓ ✓ 6
flag ✓ ✓ ✓ ✕ ✓ ✓ ✓ 6
same_srv_rate ✓ ✓ ✓ ✓ ✕ ✓ ✕ 5
count ✓ ✓ ✕ ✕ ✓ ✓ ✓ 5
dst_host_srv_count ✓ ✓ ✕ ✕ ✓ ✓ ✓ 5
dst_host_serror_rate ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4
logged_in ✓ ✓ ✕ ✓ ✕ ✕ ✓ 4
service ✓ ✓ ✓ ✕ ✕ ✓ ✕ 4
dst_host_same_srv_rate ✓ ✓ ✕ ✕ ✓ ✕ ✓ 4
dst_host_srv_diff_host_rate ✓ ✕ ✕ ✓ ✓ ✕ ✓ 4
srv_rerror_rate ✕ ✓ ✕ ✓ ✓ ✕ ✓ 4

To evaluate those selections (both EnFS and the individual
seven methods), we performed three types of experiments using
the ensemble supervised model. Initially, we used the full
feature set (i.e.; no FS method was applied), then seven feature
sets obtained from seven selection methods, and finally we used
feature set obtained from EnFS for model classification. Table
III shows the best performed experiments, whereas the full
experimental results are available in
https://github.com/simplysaikat/EnFS/ . From Table III, it is
obvious that the features obtained from EnFS perform better
than all other FS methods. In addition, full feature set (i.e.;
without applying any selection method) was used in another

experimentation to compare and evaluate the necessity of FS
methods or framework like EnFS.

TABLE III. BEST PERFORMED CLASSIFICATION RESULTS USING FULL
FEATURES, SEVEN FEATURES AND THE FEATURES OBTAINED FROM ENFS.

M
et

ho
d

M
od

el

N
am

e

F -
1

Sc
or

e

A
cc

ur
ac

y Pr
ec

isi
o

n R
ec

al
l

FP
R

No FS Ens_DT 0.884 0.900 0.878 0.890 0.011
PEARSON Ens_DT 0.882 0.904 0.941 0.830 0.040

CHI2 Ens_DT 0.925 0.936 0.941 0.909 0.043
MUTINFO Ens_DT 0.869 0.895 0.950 0.801 0.032

LASSO Ens_NN 0.921 0.936 0.989 0.862 0.007
LRL1 Ens_NB 0.888 0.912 0.982 0.811 0.011

RF Ens_DT 0.898 0.918 0.977 0.831 0.015
RFE Ens_SVM 0.893 0.916 0.990 0.814 0.006
EnFS Ens_DT 0.971 0.975 0.991 0.952 0.006

The ROC curve performance analysis for EnFS framework is
shown in Fig. 2. Rest of the ROC curves for seven selection
methods are available in
https://github.com/simplysaikat/EnFS/tree/master/ROC_AUC/

Fig. 2. ROC curve using EnFS framework

Using Table III, a bar chart can be plotted as shown in Fig.
3. It shows the comparison of performances using features from
seven methods, from EnFS, and appling no FS method.

Fig. 3. Performance comparison of EnFS with other seven selection methods
and using no selection method.

60

From all the above figures and comparisons, it is obvious
that our ensemble framework for FS methods (EnFS)
outperforms any other single selection methods.

VII. CONCLUSION

Feature selection is a vital part of any classification problem.
In this research, we have proposed an ensemble framework for
feature selection (EnFS) which combined seven well-known
selection methods. The goal of combining these methods is to
extract the most accurate set of features that produces better
outcomes in detecting DDoS attacks. We have performed three
experiments using the i) full feature set initially, then ii) seven
feature sets obtained from the seven selection methods, and iii)
finally the resultant feature set obtained from our EnFS that used
the majority voting technique. The NSL-KDD dataset provided
the basis for validating EnFS that reduced the number of features
from 41 to 11. Subsequently, we performed an extensive set of
experiments using our ensemble supervised ML framework [2]
to evaluate the performance of the resulting feature set. As a
result of this extensive experimentation, we were able to
demonstrate, in this case, that a better performance measurement
is achieved in terms of the f-1 score, accuracy, precision, recall,
and the false positive rate which is minimized.

On the basis of using these results as a baseline, we plan to
expand this approach using interpretable ML with smart agent
simulation [29]:

to better understand why certain features are more
relevant than others,

to gain greater confidence in the conclusions that are key
to early detection and prevention of DDoS attacks, and

to show that the EnFS can play a significant role in
providing a frontline defense for these types of attacks
and persuasive argument to pursue this approach in other
types of intrusion analyses.

REFERENCES

[1] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis
of the KDD CUP 99 Data Set,” Submitted to Second IEEE Symposium
on Computational Intelligence for Security and Defense Applications
(CISDA), 2009.

[2] Das, Saikat, et al. "DDoS Intrusion Detection Through Machine Learning
Ensemble." 2019 IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (QRS-C). IEEE, 2019.

[3] S. Morgan, “2017 cybercrime report,” Cybersecurity Ventures, 2017, last
accessed 2020/05/05.

[4] NETSCOUT Report, https://www.netscout.com/report/, last accessed
2020/05/05.

[5] Osanaiye, Opeyemi, et al. "Ensemble-based multi-filter feature selection
method for DDoS detection in cloud computing." EURASIP Journal on
Wireless Communications and Networking 2016.1 (2016): 130.

[6] Bolon-Canedo, Veronica, Noelia Sanchez-Marono, and Amparo Alonso-
Betanzos. "Feature selection and classification in multiple class datasets:
An application to KDD Cup 99 dataset." Expert Systems with
Applications 38.5 (2011): 5947-5957.

[7] Dash, Manoranjan, and Huan Liu. "Feature selection for classification."
Intelligent data analysis 1.3 (1997): 131-156.

[8] Pervez, Muhammad Shakil, and Dewan Md Farid. "Feature selection and
intrusion classification in NSL-KDD cup 99 dataset employing SVMs."

The 8th International Conference on Software, Knowledge, Information
Management and Applications (SKIMA 2014). IEEE, 2014.

[9] Tsang, Chi-Ho, Sam Kwong, and Hanli Wang. "Genetic-fuzzy rule
mining approach and evaluation of feature selection techniques for
anomaly intrusion detection." Pattern Recognition 40.9 (2007): 2373-
2391.

[10] Stein, Gary, et al. "Decision tree classifier for network intrusion detection
with GA-based feature selection." Proceedings of the 43rd annual
Southeast regional conference-Volume 2. 2005.

[11] Amiri, Fatemeh, et al. "Mutual information-based feature selection for
intrusion detection systems." Journal of Network and Computer
Applications 34.4 (2011): 1184-1199.

[12] Ambusaidi, Mohammed A., et al. "Building an intrusion detection system
using a filter-based feature selection algorithm." IEEE transactions on
computers 65.10 (2016): 2986-2998.

[13] Das, Saikat, Ahmed M. Mahfouz, and Sajjan Shiva. "A Stealth Migration
Approach to Moving Target Defense in Cloud Computing." Proceedings
of the Future Technologies Conference. Springer, Cham, 2019.

[14] Balkanli, Eray, A. Nur Zincir-Heywood, and Malcolm I. Heywood.
"Feature selection for robust backscatter DDoS detection." 2015 IEEE
40th Local Computer Networks Conference Workshops (LCN
Workshops). IEEE, 2015.

[15] Suresh, Manjula, and R. Anitha. "Evaluating machine learning algorithms
for detecting DDoS attacks." International Conference on Network
Security and Applications. Springer, Berlin, Heidelberg, 2011.

[16] Das, Saikat, Deepak Venugopal, and Sajjan Shiva. "A Holistic Approach
for Detecting DDoS Attacks by Using Ensemble Unsupervised Machine
Learning." Future of Information and Communication Conference.
Springer, Cham, 2020.

[17] Chandrashekar, Girish, and Ferat Sahin. "A survey on feature selection
methods." Computers & Electrical Engineering 40.1 (2014): 16-28.

[18] Sheikhpour, Razieh, et al. "A survey on semi-supervised feature selection
methods." Pattern Recognition 64 (2017): 141-158.

[19] Khalid, Samina, Tehmina Khalil, and Shamila Nasreen. "A survey of
feature selection and feature extraction techniques in machine learning."
2014 Science and Information Conference. IEEE, 2014.

[20] Molina, Luis Carlos, Lluís Belanche, and Àngela Nebot. "Feature
selection algorithms: A survey and experimental evaluation." 2002 IEEE
International Conference on Data Mining, 2002. Proceedings. IEEE,
2002.

[21] Adams, Stephen, and Peter A. Beling. "A survey of feature selection
methods for Gaussian mixture models and hidden Markov models."
Artificial Intelligence Review 52.3 (2019): 1739-1779.

[22] Chen, You, et al. "Survey and taxonomy of feature selection algorithms
in intrusion detection system." International Conference on Information
Security and Cryptology. Springer, Berlin, Heidelberg, 2006.

[23] Thomas Huijskens, Feature selection,
https://thuijskens.github.io/2017/10/07/feature-selection/, last accessed
2020/05/05.

[24] Wikipedia, Pearson Correlation,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient, last
accessed 2020/05/05.

[25] Wikipedia, Chi Squared Test, https://en.wikipedia.org/wiki/Chi-
squared_test, last accessed 2020/05/05.

[26] Fonti, Valeria, and Eduard Belitser. "Feature selection using lasso." VU
Amsterdam Research Paper in Business Analytics (2017): 1-25.

[27] Towards Data Science, Random Forests,
https://towardsdatascience.com/feature-selection-using-random-forest-
26d7b747597f, last accessed 2020/05/05.

[28] Hettich, S. and Bay, S. D. (1999). The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of California, Department
of Information and Computer Science.

[29] Das, Saikat, and Sajjan Shiva. "CoRuM: collaborative runtime monitor
framework for application security." 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC
Companion). IEEE, 2018.

61

