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a b s t r a c t 

Stealthy false data injection attacks target state estimation in energy management systems in smart 

power grids to adversely affect operations of the power transmission systems. This paper presents a data- 

driven machine learning based scheme to detect stealthy false data injection attacks on state estimation. 

The scheme employs ensemble learning, where multiple classifiers are used and decisions by individual 

classifiers are further classified. Two ensembles are used in this scheme, one uses supervised classifiers 

while the other uses unsupervised classifiers. The scheme is validated using simulated data on the stan- 

dard IEEE 14-bus system. Experimental results show that the performance of both supervised individual 

and ensemble models are comparable. However, for unsupervised models, the ensembles performed bet- 

ter than the individual classifiers. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the integration of cyberspace for communication, con-

rol and monitoring of the physical processes of generation, trans-

ission, distribution, and consumption of electricity, the smart

rid (SG) has evolved into the largest and most complex cyber-

hysical system (CPS). Even though CPS industry has attempted to

air-gap” the operational technology (OT) of CPSs from their in-

ormation technology (IT) networks, the OT networks are unfor-

unately still not fully insulated from IT networks. OT networks

re in fact vulnerable to both internal and external cybersecu-

ity threats ( Byres, 2013 ). A study by the Ponemon Institute re-

orts that 90% of organizations relying on OT have experienced at

east one business-impacting cyber-attack within the 2 years prior

o the report ( Ponemon Institute, 2019 ). Being that SGs are criti-

al national infrastructures, there is widespread concern about re-

ucing the attack surface of SGs. For example, in December 2015,

hree power distribution companies were taken down in a coordi-

ated cyber-attack, resulting in a power outage for about 225,0 0 0

krainians ( Liang et al., 2017 ). 
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Rapid advancement in machine learning algorithms have en-

bled them to find natural patterns in data that generate insight

nd enable better decisions and predictions. The use of data ana-

ytics to predict, detect, and prevent security threats is termed se-

urity analytics ( Cybenko and Landwehr, 2012 ). The incorporation

f cyber capabilities into SG functionality has led to the prolifera-

ion of new data sources. The availability of abundant data gener-

ted by these components has enabled investigators to better study

ybersecurity threats and countermeasures in SGs using security

nalytics ( Tan et al., 2017 ). 

.1. The research problem 

State estimation (SE) is the principal tool used by energy man-

gement systems (EMS) at power transmission control centers. SE

omputes voltage magnitudes and phase angles for all of the differ-

nt buses after collecting measurement data communicated to the

ontrol center from remote terminal units (RTUs) equipped with

CADA units ( Abur and Gomez-Exposito, 2004 ). A cyber-attacker

an subtly modify these measurement data after compromising

TUs or substation meters, by gaining unauthorized access to the

ontrol system or by intruding into the wireless communication

etworks, for example, by successfully conducting a man-in-the-

iddle attack. This new type of cyber-attack against SE in EMS

s called false data injection (FDI) attacks ( Liu et al., 2011 ). The

alsely injected measurement data can affect the outcome of the
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SE and can reduce the control center operators level of situational

awareness. This can potentially force operators to take erroneous

corrective actions against spoofed data, which may disrupt the

real-time operation of the grid by impacting OT tools and meth-

ods such as contingency analysis, unit commitment, optimal power

flow and the computational outcomes of locational marginal pric-

ing for electricity markets. The FDI attacks that impact SE predic-

tions have been presented in several publications ( Hug and Gi-

ampapa, 2012 ; Kosut et al., 2011 ; Li et al., 2017 ; Liu et al., 2011 ;

Xie et al., 2011 ). FDI is an important element of a coordinated at-

tack on the power grid and, represents an important class of CPS

attack ( Xiang et al., 2017 ). 

Numerous attempts have been undertaken to devise detection

methods for FDI attacks using traditional statistical approaches and

based on the physics of state estimation ( Chakhchoukh et al., 2019 ;

Li et al., 2017 ) and using data-driven machine learning-based secu-

rity analytics ( Tan et al., 2017 ). 

1.2. Motivation 

Machine learning approaches work by treating FDI attacks on

the measurement data as anomalous compared to the normal

data. Hence the problem is reduced to a binary classification

task. Most of the related studies up to now have used stand-

alone (either supervised, unsupervised or semi-supervised) clas-

sification methods. Different classifiers usually perform differently

on the same data. In ensemble-based machine learning, multiple

classifiers are used together and the results given by these con-

stituent classifiers are further classified by another (second stage)

classifier ( Dietterich, 20 0 0 ; Polikar, 2012 ). Ensemble-based ma-

chine learning approaches have been shown to perform well in

solving other problems ( Das et al., 2020 ; Moustafa et al., 2018 ;

Zhang et al., 2019 ). 

Supervised methods have the advantage of learning to differen-

tiate the anomalous from normal data using a tagged or labeled

dataset. Unsupervised methods, on the other hand, sort data into

different clusters where the strength of the clustering lies within

the algorithm itself. Among unsupervised methods, novelty and

outlier detection strategies have shown significant promise in de-

tecting otherwise hidden anomalies. The supervised methods re-

quire large amounts of data to be curated as labeled data (i.e., with

ground truth). It is not very difficult to collect data during normal

operation. However, “attack” data is very sparsely available mak-

ing the process of creating labeled datasets onerous. Unsupervised

methods do not require labeled data. These methods, though more

prone to higher rates of false detection, are better equipped to dis-

cover zero-day attacks never before encountered. A scheme that

utilizes both supervised and unsupervised classifiers can address

and counterbalance the drawbacks inherent to each other. 

1.3. Ensemble-based machine learning 

In this paper, a security analytics approach that employs

two sets of machine learning ensembles is presented to identify

stealthy FDI attacks on state estimation. One set of the ensem-

bles uses only supervised methods while the other one uses only

unsupervised methods. The supervised methods used are logistic

regression (LR), support vector machines (SVM), naive Bayes with

Gaussian function (NB), decision tree (DT), and neural networks

(NN). The unsupervised methods are one-class SVM (OCSVM), iso-

lation forest (ISOF), elliptic envelope (EE), and local outlier factor

(LOF). These individual classifiers when run together, simultane-

ously or one after another, form the first phase of a machine learn-

ing ensemble. The resultant classifications, into either normal or

anomalous, are used as input to another classifier, called the en-

semble classifier . Majority voting, logistic regression, support vector
achines, naive Bayes with Gaussian function, decision tree, and

rtificial neural networks are used as the ensemble classifiers. The

odels are trained using historical data and the best performing

upervised and unsupervised ensemble models are chosen out of

ix ensemble models of each kind. Both of these “best” models

rom these experiments would then be deployed online for real-

ime detection of stealthy FDI attacks on SE. 

.4. Contributions 

The major technical contributions of this paper are summarized

s follows. 

• Design of an ensemble-based machine learning (EML) scheme

that consists of ensembles of both supervised and unsupervised

classification methods to leverage the advantages of these two

learning classes. 
• Inclusion of the random forest classifier (RFC) in the EML

scheme enabling a reduced number of features in the data

thereby assessing and minimizing the effect of the so-called

“curse of dimensionality” ( Verleysen and François, 2005 ). 
• Generation of power transmission system measurement data

using a standard IEEE 14-bus system simulated in MAT-

POWER ( Zimmerman et al., 2011 ) and introduction of stealthy

FDI attacks, i.e., intelligently crafted modifications, to the power

flow data. 
• Development of a testing and evaluation scheme using the sim-

ulated data to enable performance assessment of the differ-

ent EMLs against stand-alone models using standard evaluation

metrics. 

.5. Paper organization 

Henceforward this paper is organized as follows. Section 2 sum-

arizes the related works. Section 3 describes the state estimation

nd stealthy FDI process. Section 4 presents the EML framework.

 set of experiments with this framework along with the results

re presented in Section 5 . Conclusions and future work are pre-

ented in Section 6 , followed by an acknowledgment and the refer-

nces. All the abbreviations used throughout the paper are listed in

able A.7 in Appendix A . Additional literature review is presented

n Appendix B , and a brief overview of the machine learning meth-

ds used in this paper is given in Appendix C . 

. Related work 

A number of machine learning based approaches have been

roposed to detect false data injection attacks on the state estima-

ion in energy management systems. Table 1 lists the related works

howing the learning class, algorithms used for feature selections,

lgorithms used for training, and how the datasets were generated

r obtained for each of the works listed. A review of these works

s given in Appendix B . In this section, the works directly related

o the current work are discussed. 

Ozay et al. (2015) employed supervised and semi-supervised

achine learning methods to detect both observable (non-stealthy)

nd unobservable (stealthy) FDI attacks. The supervised methods

sed were perceptron, k-nearest neighbors (k-NN), support vec-

or machine (SVM) with linear and Gaussian kernels, sparse logis-

ic regression (SLR), and AdaBoost; and the semi-supervised SVM

S3VM). They evaluated the models using MATPOWER simulations

f IEEE 9-, 57- and 118-bus systems. While they used multiple in-

ividual classifiers and a boosting algorithm (i.e., AdaBoost), they

id not assemble the methods in an ensemble. 

Wang et al. (2017a) applied the concept of “first difference”,

orrowed from economics and statistics to time-series mea-

urement data to detect time-synchronous attacks on SE. The
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Table 1 

Overview of machine learning-based detection of FDI attacks on the SE in the SGs. 

ML Class Author(s) Feature Training Datasets 

Selections Models Generator 

Supervised Esmalifalak et al. (2017) PCA Distributed SVM MATPOWER 

Ozay et al. (2015) Perceptron, k-NN, SVM & SLR MATPOWER 

He et al. (2017) CGB-RBM CDBN MATPOWER 

Wang et al. (2017b) MSA Simulink 

Wang et al. (2017a) k-NN, ANN, SVM, NB & DT MATPOWER 

Ashrafuzzaman et al. (2018) RFC ANN MATPOWER 

Ayad et al. (2018) RNN MATPOWER 

Ahmed et al. (2018a) GA ED-based MATPOWER 

Ahmed et al. (2018b) GA SVM MATPOWER 

Niu et al. (2019) RNN & CNN MATPOWER 

Wang et al. (2019) RF, AdaBoost Simulated 

Alimi et al. (2019) SVM & ANN Nigerian Grid 

Camana-Acosta et al. (2020) KPCA ERT MATPOWER 

Mohammadpourfard et al. (2020) PCA k-NN MATPOWER 

Unsupervised Chaojun et al. (2015) KLD-based MATPOWER 

Hao et al. (2015) PCA-approximation MATPOWER 

Ahmed et al. (2018a) GA ED-based MATPOWER 

Wang et al. (2018) SAE LR MATPOWER 

Yang et al. (2018) PCA OCSVM, RC, ISOF & LOF MATPOWER 

Ahmed et al. (2019) PCA ISOF MATPOWER 

Semi-supervised Ozay et al. (2015) S3VM & SLR MATPOWER 

Chakhchoukh et al. (2016) DRE MATPOWER 

Foroutan and Salmasi (2017) PCA MGD-based MATPOWER 

Reinforcement Kurt et al. (2018) SARSA MATPOWER 

“  

v  

a  

M  

a

 

c  

a  

t

 

a

 

 

 

 

 

 

 

3

 

s  

i  

a

3

 

u  

t  

s  

s  

c  

t  

Fig. 1. The state estimation process for power transmission systems 

(from Thomas and McDonald (2015) ). 
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first-difference aware” data is then trained using five super-

ised models k-NN, neural network (NN), SVM, naive Bayes (NB)

nd decision tree (DT). They tested their proposed approach on

ATPOWER-simulated IEEE 14-bus system. In this case also the

uthors used the methods as stand-alone methods only. 

On the unsupervised learning side, ( Yang et al., 2018 ) used one-

lass SVM (OCSVM), robust covariance (RC), isolation forest (ISOF)

nd local outlier factor (LOF) as individual classifiers. They ran

hese methods using data from a simulated IEEE 14-bus system. 

A few observations can be made from the review of the works

bove and the works listed in Table 1 : 

1. Different learning classes had been attempted by the re-

searchers. However, no attempts to use adversarial learning or

explanation-based learning have been undertaken up to now. 

2. None of the investigations combined both supervised and un-

supervised methods together in one approach. 

3. A few studies mentioned here used multiple classifiers as indi-

vidual methods, but none used any ensemble methods. 

4. Almost all the studies used simulated datasets for validating

their approaches. ( Alimi et al., 2019 ) used power flow data from

the Nigerian power grid, but they seeded synthetic attacks into

the dataset later. 

. False data injection attacks on state estimation 

This section describes state estimation (SE) in power transmis-

ion system, the mathematical formulation for stealthy false data

njection (FDI) attacks on static SE, and how stealthy FDI attacks

re carried out on SE. 

.1. State estimation in power transmission systems 

State Estimation is used to provide the best estimate of the val-

es of the system’s unknown state variables, i.e., voltage magni-

udes and phase angles on the system buses, based on the mea-

urements available from the network model and sent by the

upervisory control and data acquisition (SCADA) system to the

ontrol center. This is known as static state estimation which cap-

ures the quasi-static behavior of the power transmission system.
E is run every few seconds to few minutes. The functions of the

tate estimator include identifying and correcting anomalies in the

ata, suppressing any bad data, and refining the measurements. Fi-

ally, SE delivers a set of state variables that are acceptable to the

perator and as inputs to other computational programs within the

nergy management system (EMS) ( Thomas and McDonald, 2015 ).

ig. 1 gives the data flow in a typical state estimator. 

These EMS tools are directly dependent on SE outputs process

 Thomas and McDonald, 2015 ): 

Contingency analysis is one of the most important tasks of the

EMS. It involves performing efficient calculations of system
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performance from a set of simplified system contingency

conditions and is used for fast estimation of system static

stability right after outages. 

Unit commitment is an operational planning method used to

determine the schedule called the unit commitment sched-

ule which tells the system operators beforehand when and

which units to start and shut down during the operation

over a pre-specified time, such that the total operating cost

for that period is minimized. 

Optimal power flow is a technique used to simulate load flow

through an AC power system by finding the combination of

flows that is operationally and economically optimal. 

Locational marginal pricing tools are used to price out the

cost of electricity for the local distributors and consumers. 

The SE process generates a “residual vector” which is analyzed

to detect possible abnormal measurements by checking for residu-

als that do not obey the Gaussian assumption. While the standard

residual analysis tests can identify the presence of errors, it may

not detect “stealthy” FDI attacks because an attacker familiar with

the target power transmission system topology can carefully craft

the amount of data to be injected in such a way that the residual

of the original measurement vector remains equal to the residual

of the measurement vector that contains the injected (or spoofed)

false data. 

3.2. Formulation of SE and FDI attacks 

The static SE is run after the SCADA units collect the power

flows, power injections and voltage magnitudes measurements

from the system buses. The static SE estimates the state vector

x ∈ R 

n that contains phase angles and voltage magnitudes at the

different buses, where n = 2 k − 1 and k is the number of buses in

the system. For AC static SE, the state vector x obeys the following

nonlinear equation: 

z = h ( x ) + e (1)

In the above equation, the vector of measurements z ∈ R 

m contains

measurement readings from SCADA units, where m is the number

of measurements. The nonlinear vector function h ( · ) is computed

from the grid topology and the transmission lines, transformers

and other grid device parameters. The error vector e ∈ R 

m is as-

sumed Gaussian with a covariance matrix R . The SE is run to com-

pute and estimate the state vector x using an iterative algorithm

based on the weighted least squares (WLS) ( Abur and Gomez-

Exposito, 2004 ). 

ˆ x k = 

ˆ x k −1 + H 

� 

k 
( z k − h ( x k −1 ) ) (2)

where H 

� 

k 
= (H 

� 
k 

R −1 H k ) 
−1 H 

� 
k 

R −1 and H k is the Jacobian matrix of h

with respect to x at step k . The WLS algorithm is optimal under

Gaussian noise. 

After the algorithm converges, i.e., once ‖ ̂ x k − ˆ x k −1 ‖ < δ for

some chosen small threshold δ > 0, the obtained residuals are an-

alyzed for possible abnormal measurements by checking for resid-

uals that do not obey the Gaussian assumption. These abnormal or

bad data could be due to natural failures such as sensor or com-

munication error, or due to FDI attacks. The chi-square test ( χ2 )

and the “3 σ ” rejection rule are used, in most cases, to detect the

bad data ( Abur and Gomez-Exposito, 2004 ). 

A DC static SE can also be computed. In this case, only phase

angles are estimated. All voltages are assumed to be equal to 1pu.

The line resistances are neglected and the phase angles differences

between buses are assumed to be small. The DC model obeys a

linear regression model. 
z = H x + e (3) b  
.3. Stealthy FDI attacks on state estimation 

Conventional methods detect abnormal or bad data by analyz-

ng the residual (i.e., the difference between the measurement vec-

or z and the calculated value from the SE, i.e., z − H ̂

 x ). If the

argest absolute value of the elements in normalized residual is

reater than a pre-defined threshold α > 0, ( α is generally chosen

o be 3) the corresponding measurement is identified as bad data

nd reported to system operators. The measurement is removed

nd the estimation is re-executed. Therefore, if the bad data is due

o FDI attacks and the injected data are large enough, the conven-

ional residual tests can detect them: these are called non-stealthy

DI attacks , or simply FDI attacks. In the non-stealthy case, the at-

ackers do not have the knowledge of the measurement matrix H

nd they simply manipulate the meter readings to generate ran-

om attacks. If the attackers have knowledge of the system topol-

gy or know the measurement matrix H , they can carefully and

ntelligently craft the false data in such a way that the residual

 , the true residual of the original measurement vector z , remains

he same as the residual r a of the measurement vector z with the

njected data z a . 

 a = z a − H ̂

 x a = z − H ̂

 x = r (4)

hese attacks cannot be detected using the conventional meth-

ds based on residual analysis, and are called stealthy FDI attacks

 Liu et al., 2011 ). 

.4. Stealthy FDI attack process 

False data injection attacks can be carried out on different parts

f the power grid, e.g., transmission systems, distribution systems,

dvanced metering infrastructure, etc. ( Liu and Li, 2017 ). However

ere, only FDI attacks on the SE in the AC power transmission sys-

em are considered. 

The following are the steps an adversary may use to commit a

tealthy FDI attack: 

1. Intrusion into the System (the stepping-stone): 

(a) If the adversary is an outsider, they will hack into the

system using any or more of the usual cyber-attacks,

e.g., spear-phishing, password-cracking, cracking the crypto-

graphic protection, or using a man-in-the-middle attack by

compromising any wired or wireless communication chan-

nel, among others. 

(b) An outside adversary can also be successful in installing

malware using the means described above or by using so-

cial engineering ploys. This malware may have the ability to

steal system information, particularly bus topology. 

(c) If the adversary is a trusted insider, then they may already

have the access and authority to the needed information. 

2. Carry out stealthy FDI attacks: 

(a) After the adversary has gained access into the system

and obtained the necessary system information, they can

now surreptitiously change measurement data to achieve a

stealthy FDI attack. 

(b) The operator and the state estimator assume that the data is

correct and estimate the state variable values based on this

false assumption. 

(c) Since the state variable values do not represent the actual

state of the system, calculation by any of the post-SE tools

will be incorrect. This will cause an erroneous situation re-

sulting in adverse operation of the system in turn causing

malfunctions or major disruptions. 

he goal of the attacker is to disrupt the operation of the trans-

ission system leading to a failure in one or more components or

uses, which may even trigger a cascade of failures, i.e., tripping of
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Fig. 2. High-level diagram of the training pipelines for supervised and unsupervised learning. 
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reakers because of power overload, and causing localized to wide-

cale power disruption. 

. Ensemble-based method 

This section provides an overview of the ensemble-based

tealthy FDI attack detection scheme. The framework imple-

ents pipelines of individual and ensemble methods consist-

ng of both supervised and unsupervised classifiers. The detailed

chematic diagram depicting the process flow is given in Fig. 2 .

t shows the individual processing phases, namely (1) data pre-

rocessing, (2) feature selection, (3) classification using individ-

al classifiers, (4) classification using ensemble methods, and (5)

uilding the best performing detection models. The training is

erformed offline with historical data, and the testing is per-

ormed online in real-time deployment mode. A review of the

achine learning methods used in this framework is given in

ppendix C . 

.1. Data preprocessing 

Data preprocessing is the first and foremost task before starting

ith any machine learning application. There are various sub-tasks

n a data preprocessing phase such as removing unwanted data,

ata conversion, scaling, removing invalid data, etc. At this time,

he framework supports standard and min-max scaling. 
.2. Feature selection 

The dimension of a dataset increase with the size of the power

rid. For example, the number of features in the measurement

ata for state estimation is 27 for the IEEE 9-bus system and is

122 for the IEEE 300-bus system. With increasing feature dimen-

ions the complexity and elapsed time for training the models

ncrease very steeply, causing the so-called “curse of dimension-

lity” ( Verleysen and François, 2005 ). To minimize this problem,

eature selection is often used to eliminate the least discriminating

eatures from the dataset, thereby reducing the dimensionality

ithout sacrificing much of the information. Selecting the best

eature and best number of features could lead the method to

chieve its optimal performance while minimizing its running

ime. The feature selection phase is one of the most crucial phases

f model classification, which can be done by various inbuilt

echanisms or by using domain knowledge. The ensemble frame-

ork currently supports random forest classifier (RFC) as a feature

election algorithm. 

.3. Individual classifiers 

The scheme employs both supervised and unsupervised clas-

ifier methods. In supervised learning, labeled data, i.e., a train-

ng set of examples with correct responses, is provided and based

n this training the machine learning algorithm generalizes (i.e.,

earns the patterns in the training data) to classify the unlabeled

nput sets. In unsupervised learning, the algorithm is trained with
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unlabeled data to identify similarities between the inputs that have

something in common. These similar inputs are then categorized

together. In other words, the algorithm attempts to learn the hid-

den patterns in the input data, and later predicts responses to test

inputs based on the learned patterns. 

If trained with well-developed labeled data, supervised learning

models perform better than unsupervised models. However, the

additional and often cumbersome data engineering needed to la-

bel raw data is painstaking and challenging. Moreover, attack data

is very sparse. Consequently, the availability of labeled data is not

always guaranteed in a timely manner. That is why most datasets

are synthetic. Because supervised models are trained with labeled

data, they learn the patterns associated with “attacks” very well

and can detect such patterns more consistently. However, if the at-

tack pattern is not one of the learned patterns or if the attack is

a new one, then the performance of supervised models is highly

degraded. In these cases, unsupervised models which flag any out-

of-the-ordinary pattern more consistently must be considered. For

these reasons, both supervised and unsupervised models are in-

cluded in the framework. 

4.3.1. Supervised classifiers 

The supervised classifiers included in the framework are: deci-

sion tree (DT), logistic regression (LR), naive Bayes (NB), support

vector machine (SVM), and artificial neural network (NN). C.2 pro-

vides a brief description of these methods. 

4.3.2. Unsupervised classifiers 

The unsupervised classifier models included in the framework

are: one-class support vector machine with polynomial kernel

(OCSVM_P), one-class support vector machine with linear kernel

(OCSVM_L), isolation forest (ISOF), elliptic envelope (EE), and local

outlier factor (LOF). C.3 provides a brief description of these meth-

ods. 

4.4. Ensemble classifiers 

Ensemble is a learning method where different classifiers are

combined into a meta-classifier that has better generalization per-

formance than each individual classifier alone ( Dietterich, 20 0 0 ;

Polikar, 2012 ). Ensemble is a two-stage process. The first stage

consists of different classification methods, for example, DT, SVM,

LR, and so on, or one base classification algorithm can be used

repeatedly with different subsets of the training data. These in-

dividual classifiers are run together, simultaneously or one after

another. In the second stage, the decisions given by individual

classifiers are fed as input to another classifier, called the ensemble

classifier , for the final decision. Majority voting is the most popular

ensemble method, which selects the class label that has been

predicted by the majority of the constituent classifiers. Instead of

majority voting any binary classification method can be used as

the ensemble classifier. 

This framework contains two ensembles: one is an ensemble of

all the individual supervised classifiers used in the framework, and

the other is an ensemble of all the individual unsupervised clas-

sifiers. The framework uses six classifiers as the ensemble classi-

fier: majority voting (Ens_MV), logistic regression (Ens_LR), naive

Bayes (Ens_NB), neural network (Ens_NN), decision tree (Ens_DT),

and support vector machine (Ens_SVM). Fig. 3 shows the ensemble

arrangements. 

4.5. Best performing models 

The datasets in the pipeline go through all the individual and

ensemble classifiers. The performance of all the supervised clas-

sifiers and the unsupervised classifiers are then compared using
tandard evaluation metrics. This comparison identifies the best

erforming supervised ensemble model and the best performing

nsupervised ensemble model. These models will be deployed in

he state estimation process for real-time detection of stealthy false

ata injection attack in power transmission systems. Fig. 4 depicts

 possible real-time detection pipeline. Any unknown FDI attack

etected by the best unsupervised model, can be used to train the

upervised ensemble, so that next time around those attacks are

etected more quickly and more reliably. 

. Experiments and results 

This section presents a set of experiments that were performed

sing the framework presented above and associated results. 

.1. Attack model 

The attack model considered in this paper constitute FDI at-

acks targeting the static AC (alternating current) state estimation

f the transmission system. The considered attack model assumes

hat the attacker is capable of changing the communicated data

uch as voltages, currents and power magnitudes. The adversary

as only selected partial knowledge of the network topology and

herefore can generate a stealthy attack on a single bus only. The

ttack model assumes one fixed bus is targeted throughout the en-

ire duration of the attack, meaning that it is a targeted attack, not

 random attack. 

.2. Simulation and data generation 

Simulation of the standard IEEE 14-bus system is used for

he purpose of generating power flow data. The IEEE 14-bus

ystem has 5 generators and 11 loads ( University of Wash-

ngton, 2018 ), as shown in Fig. 5 . The measurements are ob-

ained from solving power flows using the MATPOWER tool-

ox ( Zimmerman et al., 2011 ) and adding Gaussian measurement

oise. The loads are considered to vary randomly around their av-

rage values. The measurements are 40 active power-flows, 14 ac-

ive power-injections, 40 reactive power flows, 14 reactive power-

njections and 14 voltage magnitudes giving a total of 122 mea-

urement features. The dataset consists of 10 0,0 0 0 sets of mea-

urements. 

.3. Experimental setup 

The framework has been implemented in the Python program-

ing language and using the machine learning library scikit-

earn ( Pedregosa et al., 2011 ). The experiments were executed on

 PC with x64 Intel®CORE TM i5-6600K CPU @ 3.50GHz, 8GB mem-

ry and running a 64-bit Ubuntu Linux operating system. 

.4. Data preprocessing 

The dataset generated contains 90% “normal” data and 10% “at-

ack” data implying that the dataset is imbalanced. Classifiers per-

orm poorly when trained with imbalanced datasets, especially for

he minority class. In this case, the “attacks” are in the minor-

ty class, and the goal is to detect these precisely. To overcome

his problem, two popular techniques to balance datasets, namely

he synthetic minority over-sampling technique (SMOTE) and the

dited nearest neighbor (ENN), were applied to over-sample the

attack” sets of data and under-sample the “normal” sets of data

espectively ( Batista et al., 2004 ). After this balancing act the ra-

io of major and minor class samples in the dataset was 3:2. Since

he unsupervised models function as outlier or anomaly detectors
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Fig. 3. Five individual classifiers combining with one of six ensemble classifiers to form six ensembles. 

Fig. 4. High-level diagram of the deployment pipeline using the best-performing 

models. 

Fig. 5. Diagram of IEEE 14-bus system (adapted from University of Washington 

(2018) ) showing the stealthy FDI attack on bus number 4. 
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Fig. 6. Plot showing the features in the dataset in order of importance. 

Table 2 

The Confusion Matrix. 

Predicted Predicted 

Normal Attack 

Actual Normal TN FP 

Actual Attack FN TP 
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o  
n this paper, the dataset was not balanced for the unsupervised

odels. 

The dataset did not have any missing data or invalid data; con-

equently, no data cleaning was performed. The data types of all

he features in the dataset are numeric, except for the class la-

el which is either “normal” or “attack”. All the “normal”s were

hanged to 0s and “attack”s to 1s. Standard scaling was applied

o the dataset. In standard scaling, the features are normalized by

emoving the mean and scaling to unit variance. Standard scaling

eplaces the data values in a feature by their z score. For a value x ,

he z score is calculated as: z = (x − μ) /σ, where μ is the mean

nd σ is the standard deviation of the data values for a given

eature. 
.5. Feature selection 

The random forest algorithm was used on the dataset to obtain

n ordering of the features according to their importance. A plot

howing the feature importance is given in Fig. 6 . The figure shows

hat the first 21 features have the largest variances, and therefore

nly these features were retained in the dataset as the predictor

ariables, plus the target variable. 

.6. Model training 

In the model training phase, the experiments were conducted

ith individual classification first and then ensemble classification.

he experiments ran the data through five supervised and five un-

upervised learning models. Six ensemble models were run with

he outcomes of the supervised models, and six ensemble models

ith the outcomes of the unsupervised models. The models were

un using grid-search and the best values of the hyper-parameters

iven by grid-search were retained. The optimal hyper-parameters

sed for different models are given in Table 3 . The dataset was

plit into two subsets: 70% for training and 30% for testing.

o avoid over-fitting and to obtain robust models, 10-fold cross

alidation over randomly divided training data was used. Then

he test data was used for prediction and for measuring model

erformance. 

.7. Evaluation metrics 

A machine learning classification model predicts class labels as

utput for a given input data. In this case, the class labels are
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Table 3 

Hyper-parameter values used for different individual and ensemble classifiers. 

Classifier Short Hyper-parameter Values 

Names 

Supervised Logistic Regression LR random_state = 0, solver = ‘lbfgs’, 

Models multi_class = ‘multinomial’ 

Decision Tree DT default parameters 

Naive Bayes NB alpha = 1.0, binarize = 0.0, 

fit_prior = True, class_prior = None 

Neural Network NN solver = ‘lbfgs’, alpha = 1e-5, 

hidden_layer_sizes = (5, 2), random_state = 1 

Support Vector SVM C = 1.0, kernel = ‘rbf’, degree = 3, gamma = ‘scale’, 

Machine coef0 = 0.0, shrinking = True, probability = True 

Unsupervised One Class SVM- OCSVM_P nu = 0.2, kernel = ‘poly’, gamma = 0.1 

Models Polynomial Kernel 

One Class SVM- OCSVM_L nu = 0.2, kernel = ‘linear’, gamma = 0.1 

Linear Kernel 

Local Outlier Factor LOF n_neighbors = 20, 

contamination = 0.1, novelty = True 

Isolation Forest ISOF behaviour = ‘new’, max_samples = 100, 

random_state = rng, contamination = 0.1 

Elliptic Envelope EE support_fraction = 1, contamination = 0.1, 

random_state = rng 

Ensemble Majority Voting Ens_MV none 

Models Decision Tree Ens_DT default parameters 

Naive Bayes Ens-NB alpha = 1.0, binarize = 0.0, 

fit_prior = True, class_prior = None 

Logistic Regresion Ens_LR random_state = 0, solver = ‘lbfgs’, 

multi_class = ‘multinomial’ 

Neural Network Ens_NN solver = ‘lbfgs’, alpha = 1e-5, novelty = True 

hidden_layer_sizes = (5, 2), random_state = 1 

Support Vector Ens_SVM C = 1.0, kernel = ‘rbf’, degree = 3, gamma = ‘scale’, 

Machine coef0 = 0.0, shrinking = True, probability = True 

Table 4 

Evaluation metrics values for supervised individual and ensemble models using the test dataset. 

Models F1-Score Accuracy Precision Sensitivity FPR Specificity ROC AUC 

LR 0.8439 0.8931 0.9991 0.7304 0.0003 0.9997 0.8639 

NB 0.8439 0.8931 0.9991 0.7304 0.0003 0.9997 0.8081 

NN 0.8439 0.8931 0.9991 0.7304 0.0003 0.9997 0.8650 

DT 0.8438 0.8930 0.9991 0.7302 0.0003 0.9997 0.8797 

SVM 0.8439 0.8931 0.9991 0.7304 0.0003 0.9997 0.8642 

Ens_MV 0.8439 0.8931 0.9991 0.7304 0.0003 0.9997 –

Ens_LR 0.8472 0.8961 0.9993 0.7353 0.0003 0.9997 0.8675 

En_NB 0.8472 0.8961 0.9993 0.7353 0.0003 0.9997 0.8675 

Ens_NN 0.8472 0.8961 0.9993 0.7353 0.0003 0.9997 0.8675 

Ens_DT 0.8472 0.8961 0.9993 0.7353 0.0003 0.9997 0.8675 

Ens_SVM 0.8472 0.8961 0.9993 0.7353 0.0003 0.9997 0.8675 
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“normal” and “attack”. Depending on the predicted class labels,

the outcomes for binary classification can be categorized as: (1)

True positive (TP): when the model correctly identifies an attack,

(2) True negative (TN): when it correctly identifies a normal or

non-attack, (3) False positive (FP): when a non-attack is incorrectly

identified as an attack, and (4) False negative (FN): when an at-

tack is incorrectly identified as a non-attack. These four catego-

rizes constitute the so-called confusion matrix ( Hastie et al., 2008 )

shown in Table 2 . 

To evaluate the models in this paper, the following metrics de-

rived from the confusion matrix were used ( Sokolova and Lapalme,

2009 ). 

1. Accuracy = (T P + T N) /T otal Popul ation 

2. Precision = T P/ (F P + T P ) 

3. False Positive Rate (FPR) = F P/ (F P + T N) 

4. Sensitivity = T P/ (F N + T P ) 

5. Specificity = T N/ (F P + T N) 

6. F1-score = 2 T P/ (2 T N + F P + F N) 

Accuracy is the percentage of correct identification over to-

tal data instances. Precision , also known as the positive predictive

value, represents how often the model correctly identifies an at-

tack. Sensitivity , also known as the true positive rate (TPR), recall,
r detection rate, indicates how many of the attacks the model

oes identify correctly. Sensitivity intuitively gives the ability of

he classifier to find all the positive samples and the precision in-

uitively gives the ability of the classifier not to label as positive

 sample that is negative. Specificity , also known as the true neg-

tive rate, measures the proportion of actual negatives, i.e., non-

ttacks, that are correctly identified as such. F1-score , also known

s F-measure, provides the harmonic average of precision and sen-

itivity. The ROC AUC score is a measure of the diagnostic ability

f binary classifier systems. To demonstrate the detection perfor-

ance of different models over all possible thresholds, the ROC

urves are plotted. 

In addition, the run times (i.e., elapsed times) were measured

or comparing the speed of different training models running the

ll-feature dataset versus the reduced-feature dataset. 

.8. Discussion of results 

Table 4 and the corresponding bar-graph in Fig. 7 show the

esults, i.e., the values for the evaluation metrics, from running

ll the five supervised classifiers and six ensemble classifiers on a

eature-reduced dataset with 21 features. The experiment results

how that the values for individual classifiers and those for the
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Fig. 7. Bar-graph of the evaluation metrics values for supervised individual and ensemble models. 

Table 5 

Training times for supervised individual and ensemble models. 

Models Elapsed Time (in s) 

21 Features 122 Features Without SVM 

LR 0.56 1.02 

NB 0.27 1.03 

NN 0.57 0.83 

DT 1.59 114.52 

SVM 2713.82 8897.83 

Ens_MV 2718.96 9017.94 6.07 

Ens_LR 2717.06 9015.59 4.15 

En_NB 2717.01 9015.32 4.12 

Ens_NN 2717.11 9015.91 4.33 

Ens_DT 2717.02 9015.59 4.08 

Ens_SVM 2733.31 9031.70 8.55 
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nsemble classifiers are effectively the same for all the metrics.

he table shows that precision values for the models are very

lose to 100%, whereas accuracy values are about 90%. However, in

 classification problem where the goal is to detect the minor class

ccurrences, the most important metrics are the sensitivity which,

n this case, measures the proportion of actual “attacks” that are

orrectly identified as such; and the specificity which measures

he proportion of actual “non-attacks” that are correctly identified
Table 6 

Evaluation metrics values for unsupervised individual and ensemble m

Models F1-Score Accuracy Precision Sensitivity FP

OCSVM_P 0.0834 0.4549 0.0494 0.2661 0.5

LOF 0.1388 0.8586 0.1604 0.1223 0.0

ISOF 0.3781 0.7939 0.2630 0.6722 0.1

EE 0.6318 0.9214 0.5606 0.7237 0.0

OCSVM_L 0.1731 0.5000 0.1023 0.5617 0.5

Ens_MV 0.4375 0.8892 0.4150 0.4626 0.0

Ens_LR 0.6409 0.9394 0.6739 0.6111 0.0

Ens_NB 0.5502 0.9034 0.4679 0.6676 0.0

Ens_NN 0.6218 0.9216 0.5428 0.7278 0.0

Ens_DT 0.6615 0.9407 0.6689 0.6544 0.0

Ens_SVM 0.6615 0.9407 0.6689 0.6544 0.0
s such. For supervised models, the sensitivity values for all the

odels are very similar, with the ensemble models having a little

etter number at 73.53%. This indicates that even the best model

ould be able to detect about 73% of the attacks and the rest

7% will go undetected. The specificity values for the models are

9.97% meaning that the models are able to identify a “non-attack”

s such almost always, and will seldom raise a false alert. 

Table 5 shows the elapsed time for training the different mod-

ls. It is notable that not only the ensemble models do not perform

ny better, but they also take more time to run than the individual

odels. This is because the ensembles first run all the five indi vid-

al models and then run the ensemble classifier, and the accumu-

ated elapsed time is therefore higher. 

The dataset with all the 122 features was also used to train the

odels and it was found that the performance numbers for the

odels do not change at all for this case. Comparison of the values

n column two in Table 5 with those in column three, shows that

he training times from 122 features are up to 400% more than

hose with 21 features. 

As seen in Section 2 the SVM is a popular model among the

esearchers working on the problem of detecting stealthy FDI at-

acks on SE. However, the experiment shows that SVM performs

he same as the other models. Moreover, SVM takes much more
odels using the test dataset. 

R Specificity ROC Elapsed Time (in s) 

AUC 21 Features 122 Features 

257 0.4743 0.3702 284.16 7962.94 

657 0.9343 0.5283 841.25 3047.80 

935 0.8065 0.7393 7.87 19.16 

582 0.9418 0.8327 12.39 84.20 

062 0.4938 0.5277 35.14 199.62 

669 0.9331 – 1212.97 11316.29 

287 0.9713 0.7912 1211.11 11313.98 

736 0.9264 0.7969 1211.03 11313.96 

595 0.9505 0.8341 1211.35 11315.06 

314 0.9686 0.8114 1211.04 11315.05 

314 0.9686 0.8114 1224.92 11316.29 
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Fig. 8. Bar-graph of the evaluation metrics values for unsupervised individual and ensemble models. 

Fig. 9. ROC curves for the learning models. ROC curves predict probabilities for two-class problems. 
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time to train. Whereas the other individual models take less than

2 s to train, SVM takes more than 2700 s or 45 min on the feature-

reduced dataset. On the original dataset with 122 features, SVM

takes an astounding 8900 s or 2.47 h. This also exemplifies the

“curse of dimensionality” and how it can be handled by reducing

the feature set. It was also observed that if SVM is taken out as

a constituent individual model, then the times taken by the en-

semble models were reduced drastically without any reduction in

performance. The last column in Table 5 shows times taken by the

ensemble models when SVM is not included in the set of the indi-

vidual models. 

Table 6 and the corresponding bar-graph in Fig. 8 show the

evaluation metrics for the unsupervised models and the ensemble

models for the 21-feature dataset. For the unsupervised models, it

was observed that four out of six ensemble models have better ac-

curacy values than any of the individual classifiers. Among the in-

dividual classifiers, the elliptic envelope performs with 63.18% F1-

score and 92.14% accuracy. Two of the ensemble models, namely

ensemble with DT and ensemble with SVM, perform with 66.15%

F1-score and 94.07% accuracy. However, considering the sensitivity,

the best performing model is the ensemble with NN giving a value
f 72.78%, closely followed by the elliptic envelop with 72.37%. This

ndicates that the best diagnostic or detection ability of either su-

ervised, unsupervised or ensemble models is about 73%. The en-

emble using the LR model has the best specificity value of all the

nsupervised models at 97.13%. Among the individual models, el-

iptic envelope has the best specificity value at 94.18%. 

For the unsupervised models, training the dataset with all 122

eatures takes up to 900% more time compared to the times for the

1-feature dataset. In this case also it was observed that the per-

ormance numbers do not improve when the models are trained

ith 122 features. 

The ROC curve plots FPR on the X -axis and TPR on the Y -axis.

his means that the top left corner of the plot is the “ideal” point,

here the F P R = 0 , and T P R = 1 . The larger the area under the

urve (AUC) the better. The red dotted line indicates the random

lassification and has an AUC of 0.5. The ROC curves for the su-

ervised and unsupervised models are shown in Fig. 9 . Among

he supervised individual and ensemble models, the DT model

as the largest AUC, and among the unsupervised individual and

nsemble models, the ensemble with NN model has the largest

UC. 
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. Conclusion 

An attacker can execute stealthy false data injection attacks

n the state estimation of a power grid to steal electricity, cause

inor disruption in the grid, induce cascading failures and/or

ause large-scale outages. Therefore, it is of utmost importance

hat stealthy FDI attacks are detected quickly and accurately. In

his paper, a machine learning-based scheme having two en-

emble pipelines, one of supervised classifiers and another of

nsupervised, was described for detection of stealthy FDI attacks.

he scheme also includes RFC for dimension reduction. The

cheme was implemented using the Python machine-learning

ibraries and tested using a standard IEEE 14-bus system simu-

ated by MATPOWER. The performance of the ensemble scheme

as compared with the performance of individual classifiers.

he performance of individual supervised models are the same

s those of the ensemble models. However, for the unsuper-

ised models, the ensemble models performed better than the

ndividual models. The best models have a sensitivity met-

ic value of 73%, meaning that the models would be able to

etect 73% of the attacks. For both the supervised and unsu-

ervised models, reducing the feature set increases the training

peed many-fold without suffering any degradation in detection

ates. 

.1. Future work 

The next step with this research is to use these mod-

ls for power systems with larger numbers of buses to as-

ertain whether the performance scales reasonably. It would

lso be interesting to find out whether the training time re-

uction with the reduced feature-sets is significant for large

ystems. 
Table A.7 

List of abbreviations used in the paper. 

Abbreviation Term A

AC alternating current L

ANN artificial neural network M

BDD bad data detection M

CDBN conditional deep belief network M

CGB conditional Gaussian-Bernoulli M

CNN convolutional neural network N

CPS cyber-physical system N

DC direct current O

DRE density ratio estimation O

DT decision tree O

ED Euclidean distance O

EE elliptic envelope O

EMS energy management system P

Ens_DT ensemble with decision tree P

Ens_LR ensemble with logistic regression R

Ens_MV ensemble with majority voting R

Ens_NB ensemble with naive Bayes R

Ens_NN ensemble with neural network R

Ens_SVM ensemble with SVM R

ERT extremely randomized tree R

FDI false data injection R

FDIA false data injection attack S

FN false negative S

FP false positive S

FPR false positive rate S

GA genetic algorithm S

ISOF isolation forest S

IT information technology S

KLD Kullback-Leibler distance S

k-NN k-nearest neighbors T

KPCA kernel PCA T

LMP locational marginal pricing T

LR logistic regression W
This work used simulated data generated by MATPOWER. The

uture plan is to run the models on realistic datasets generated by

eal-time Digital Simulation (RTDS) and physical testbeds. 

Another planned work is to extend the framework to incorpo-

ate additional methods, and to configure the training pipeline for

ifferent sets of methods. An extensible and configurable frame-

ork will ensure that such a technique could be standardized for

ystematic use in transmission smart grids. 
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ppendix A. Abbreviations 
bbreviation Term 

STM long short-term memory 

GD mixed Gaussian distribution 

L machine learning 

LP multi-layer perceptron 

SA margin-setting algorithm 

B naive Bayes 

N neural network 

CSVM one-class SVM 

CSVM_L OCSVM with linear kernel 

CSVM_P OCSVM with polynomial kernel 

PF optimal power flow 

T operational technology 

CA principal component analysis 

MU phasor measurement unit 

BM restricted Boltzmann machine 

C robust covariance 

FC random forest classifier 

LR robust logistic regression 

NN recurrent neural network 

OC receiver operating characteristic 

TU remote terminal unit 

3VM semi-supervised SVM 

AE stacked autoencoder 

ARSA stateactionrewardstateaction 

E state estimation 

FDI stealthy false data injection 

G smart grid 

LR sparse logistic regression 

VM support vector machine 

N true negative 

P true positive 

PR true positive rate 

LS weighted least square 
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Appendix B. Literature review 

This section presents a literature review of machine learning-

based approaches to detect false data injection attacks on the state

estimation used in energy management systems. 

The work by ( Esmalifalak et al., 2017 ) employed a distributed

support vector machine (SVM) algorithm for training and principal

component analysis (PCA) for feature selection. Further, they tested

their model on an IEEE 118-bus system simulated by MATPOWER. 

He et al. (2017) proposed a conditional deep belief network

(CDBN), one of various deep neural network architectures, to reveal

the high-dimensional temporal behavior features of the stealthy

FDI attacks. The CDBN they employed uses conditional Gaussian–

Bernoulli restricted Boltzmann machines (CGB-RBM) for the first

hidden layer to extract those features. In all other hidden layers

conventional restricted Boltzmann machines (RBM) were used. An

IEEE 118-bus system was simulated using MATPOWER to validate

their approach. 

Wang et al. (2017b) proposed a detection method using the

margin setting algorithm (MSA). MSA is a new learning algorithm

for spherical classification. They validated their work using phasor

measurement unit (PMU) data from an IEEE 6-bus system simu-

lated in MATLAB/Simulink. 

Ashrafuzzaman et al. (2018) proposed a feed-forward neural

networks (FFNN) based scheme with different configurations for

detecting stealthy FDI attacks on SE. They used random forest

for feature selection and compared the deep learning scheme

with three other methods, namely gradient boosting machines

(GBM), generalized linear models (GLM), and the distributed ran-

dom forests (DRF). Like others, they conducted experiments using

data generated for an IEEE 14-bus system using MATPOWER. 

Ahmed et al. (2018a) proposed two Euclidean distance-

based anomaly detection schemes. The first scheme utilizes

unsupervised-learning over unlabeled data to detect outliers or

deviations in the measurements. The second scheme employs

supervised-learning over labeled data to detect deviations in the

measurements. The authors used a genetic algorithm for feature

selection. They tested the proposed methods on IEEE 14-, 39-, 57-

and 118-bus systems using MATPOWER generated data. 

Ahmed et al. (2019) utilized unsupervised learning method iso-

lation forest (ISOF) to detect FDI attacks using simulated data gen-

erated by MATPOWER. They reduce the dimensionality of the data

using PCA. To demonstrate that ISOF performs better, they com-

pared their results with those of a few other learning methods

namely SVM, k-NN, NB and MLP. They did not report how long it

took to train the models. It is unexpected that their results of ISOF

are better than the other models which are all supervised models.

Generally, supervised models perform better in terms of accuracy

than unsupervised models on the same dataset. 

The proposed framework by ( Niu et al., 2019 ) has two de-

tectors: a network anomaly detector and an FDI attack detector.

For detecting the FDI attacks, they formulated these attacks as

time-series anomalies and used a long short-term memory (LSTM)

based convolutional neural network (CNN). At the same time a re-

current neural network (RNN) with an LSTM cell is deployed to

capture the dynamic behavior of cyber activities within an IEEE

39-bus system simulated by MATPOWER. 

Wang et al. (2018) proposed a 6-layer stacked auto-encoder

(SAE), one of various deep neural network architectures, to detect

anomalies caused by stealthy FDI attacks. The SAE was used as an

advanced feature extractor and then a classical predictor, namely

logistic regression classifier, was used as the last layer. Their pro-

posed system was tested on IEEE 9-, 14-, 30- and 118-bus systems

simulated with MATPOWER. 

Camana-Acosta et al. (2020) proposed a classification scheme

based on the extremely randomized trees (ERT) algorithm and ker-
el principal component analysis (KPCA) for dimensionality re-

uction. They evaluated the proposed scheme using MATPOWER-

imulated standard IEEE 5- and 118-bus systems. 

Mohammadpourfard et al. (2020) used the idea of concept drift ,

npredictable shifts in the underlying distribution of historical data

ver time, to develop a technique to improve the performance

f existing supervised learning methods in detecting stealthy FDI

ttacks. They tested their idea using k-NN with PCA as feature

xtractor and evaluated the performance using a MATPOWER-

imulated standard IEEE 14-bus system. 

Hao et al. (2015) proposed a sparse PCA-approximation based

ethod to detect stealthy FDI attacks. In this model, identification

f real measurements with the availability of sparse data sets is

chieved by using recovery functions. The recovery function’s ac-

uracy is inversely proportional to the sparsity of available data.

s such, this model falls short from identifying FDI attacks when

ata is too sparse to produce reliably accurate recovery functions.

hey evaluated their approach on IEEE 9-, 14-, and 57-bus systems

imulated with MATPOWER. 

Chakhchoukh et al. (2016) proposed a detection method using a

emi-supervised machine learning technique known as the density

atio estimation (DRE) ( Sugiyama et al., 2012 ). They tested their

odel on an IEEE 118-bus system simulated by MATPOWER. 

Foroutan and Salmasi (2017) proposed a four-phase classifica-

ion: (1) dimension reduction using PCA, (2) mixed Gaussian model

onstruction using a positively labeled set, (3) classification thresh-

ld selection using a mixture dataset, and finally (4) evaluation us-

ng an unlabeled dataset. An IEEE 118-bus system was simulated

sing MATPOWER to validate their semi-supervised approach by

omparing its performance with those of SVM and MLP. 

Kurt et al. (2018) proposed a detection mechanism using SARSA,

 reinforcement learning algorithm. They formulated the problem

f stealthy FDI attack detection as a partially observable Markov

ecision process (POMDP). Their approach was validated using

ATPOWER-generated data for an IEEE 14-bus system. 

ppendix C. Machine learning methods 

This section briefly describes the machine learning methods

sed in the scheme presented in this paper. More information on

hese learning methods can be found in the books by Hastie et al.

2008) and Marsland (2015) . 

1. Feature selection algorithm 

1.1. Random forest 

Random forest, a popular classification and regression method,

an also be used to rank the features in a dataset based on their

mportance. Random forest consists of a number of decision trees,

here every node in the trees is a condition on a single feature,

esigned to split the dataset into two so that similar response val-

es end up in the same set. At the time of this split, a measure

f how much each feature contributes in making this decision is

aken. This measure forms the basis of ranking the features accord-

ng to their importance. Then, a number of the most important fea-

ures are retained from the ordered list of features while the others

re deleted from the dataset to obtain a feature-reduced dataset. 

2. Supervised learning algorithms 

2.1. Logistic regression 

Logistic regression (LR) is a classification algorithm that per-

orms very well on linearly separable classes. LR builds on ideas

rom the field of statistics where the logistic model is used to dis-

ern the probability of a true/false class or event. This can be ex-

ended to models with more than two classes of events. Each of
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he events would be assigned a probability value between 0 and

, where the sum of all probabilities is unity. The coefficients of

he logistic regression algorithm must be estimated from the train-

ng data which is done by using maximum-likelihood estimation.

he best coefficients would result in a model that would predict a

alue very close to 1 for the default class and value very close to

 for the other class. 

2.2. Support vector machine 

Support vector machine (SVM) is a group of supervised learn-

ng methods that identify the patterns for data classification or re-

ression analysis based on finding a separating hyperplane in the

eature space between two classes, in such a way that the dis-

ance between the hyperplane and the closest data points for each

lass is maximized. The SVM algorithm is based on probabilistic

tatistical learning theory ( Cortes and Vapnik, 1995 ) whereby the

pproach favors a minimized classification risk rather than opti-

al classification. Various types of dividing classification surfaces

an be realized by applying a kernel, such as linear, polynomial,

aussian radial basis function (RBF), sigmoid, or hyperbolic tangent

 Christianini and Shawe-Taylor, 20 0 0 ). 

2.3. Naive Bayes 

Naive Bayes is a simple classifier used in many machine learn-

ng problems. Based on the Bayes theorem this probabilistic clas-

ifier helps define the probability of an event based on some prior

nowledge of certain conditions associated with that event. The

ame naive Bayes originates from the fact that the input features

re assumed to be independent, even though in practice this may

ot always be true. 

2.4. Decision tree 

Decision tree (DT) is a non-parametric supervised learning

ethod and is used both for classification and regression. DT

uilds a tree in which each branch shows a probability between a

umber of possibilities and each leaf shows a decision. The paths

rom the root of the tree to the leaves represent classification rules.

he algorithm collects information and applies the rules for the

urpose of the decision to take a particular path. In DT, each level

plits the data according to different attributes and attempts to

chieve perfect classification with a minimal number of decisions. 

2.5. Artificial neural networks 

The computational architecture of neural networks mimics the

eural structure and function of the brain forming the intercon-

ected groups of artificial neurons. Each of these artificial neurons

s a set of input values and associated weights that trigger the neu-

on beyond a threshold. The neural network is organized in layers

f neurons. The first layer is the input layer and the last one is the

utput layer. The layers in between these two are called hidden

ayers. The neural networks attempt to hierarchically learn deep

eatures and correlations in input data by adjusting the weight

ssociated with the neurons. Neural network architectures have

any variants with each finding success in specific domains of ap-

lications. An extensive review of neural networks can be found in

he paper by Schmidhuber (2015) . 

3. Unsupervised learning algorithms 

3.1. One-class SVM 

One-class classification, also known as unary classification or

lass-modeling, tries to identify objects of a specific class pri-

arily by learning from an unlabeled training set containing

nly the objects of that class. Trained in this way, the classi-

er flags any object not recognized according to the learned gen-

ralization as an outlier or anomaly ( Khan and Madden, 2009 ).
CSVM ( Schölkopf et al., 20 0 0 ) is a support vector machine based

nomaly detector. Like the supervised SVM models, unsupervised

ne-class versions also work with different kernels. In this frame-

ork one-class SVMs with a linear kernel and a polynomial kernel

re used. 

3.2. Isolation forest 

Isolation forest ( Liu et al., 2012 ) is an ensemble regressor con-

isting of a number of isolation trees. Each tree is trained on a

andom subset of the training data. Isolation forest is used to per-

orm the outlier detection efficiently in high-dimensional datasets.

he algorithm isolates observations by randomly selecting a fea-

ure and then randomly selecting a split value between the maxi-

um and minimum values of the selected features using recursive

artitioning. The required number of splits to isolate a sample is

quivalent to the path length from the root to the leaf. The path

ength from the root to leaf, averaged over a forest of such ran-

om trees, is a measure of normality and the decision function.

andom partitioning produces noticeably shorter paths for anoma-

ies. Therefore, the trees that collectively produce shorter paths for

articular samples are highly likely to be anomalies. 

3.3. Elliptic envelope 

Elliptic envelope (EE) attempts to ‘draw’ an ellipse putting the

ormal class members inside the ellipse. Any observation outside

he ellipse is then classified as an outlier or anomaly. EE models

he data as a high dimensional Gaussian distribution with possi-

le covariances between feature dimensions and uses the FAST-

inimum Covariance Determinant ( Hubert and Debruyne, 2010 ;

ousseeuw and Driessen, 1999 ) to estimate the size and shape of

he ellipse. 

3.4. Local outlier factor 

The local outlier factor (LOF) ( Breunig et al., 20 0 0 ) first com-

utes the local densities of the data objects using distances given

y k-nearest neighbors (k-NN) algorithm. LOF then identifies re-

ions of similar density by comparing the local density of a given

ata object to the local densities of its neighbors. The data ob-

ects that have substantially lower densities than their neighbors

re identified as the anomalies. 
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