®

Check for
updates

A Stealth Migration Approach to Moving
Target Defense in Cloud Computing

Saikat Das®™®, Ahmed M. Mahfouz, and Sajjan Shiva

Department of Computer Science, The University of Memphis,
Memphis, TN 38152, USA
{sdasl, amahfouz, sshiva}@memphis. edu

Abstract. A stealth migration protocol is proposed in this paper that obfuscates
the virtual machine (VM) migration from intruders and enhances the security of
the MTD process. Starting by encrypting the VM data and generating a secret
key that is split along with the encrypted data into small chunks. Then the
fragments are transmitted through intermediate VMs on the way to the desti-
nation VM. As a result, the chances of an intruder detecting the VM migration is
reduced. The migration traffic is maintained close to normal traffic by adjusting
the chunk size, thereby avoiding the attention of the intruder. Finally, the normal
and migration traffic patterns are analyzed with the proposed protocol.

Keywords: Stealth migration - Cloud computing - Moving Target Defense -
Secure MTD - Live migration

1 Introduction

Traditional cyber networks tend to be static, giving an attacker plenty of time to study
them. During this time, the attacker can generate footprints, determine vulnerabilities,
and decide when, how, and where to attack the network. Besides, once the attacker gains
a privilege, he can maintain it for an extended period without being discovered by the
system administrators. Various detection-based security approaches have emerged, but
they struggle to detect attacks with accuracy and precision [1]. A new promising security
technique, Moving Target Defense (MTD), has been adopted as a solution to overcome
the challenge of network stat’ic nature. The idea came from the tactic of the battlefield
where occasionally fighters change their positions and resources so that their enemies
get confused and have difficulty attacking them. Likewise, in computer systems, moving
the target resources could increase the complexity and uncertainty for attackers. In cloud
computing, the virtualization techniques solely rely on distributing virtual machines
(VM) across different host machines around the world. Live Migration of VM instances
from one physical device to another can be treated as MTD since the targeted host
offloads its resident VM instances to a different host [12]. However, the process of VM
live migration itself is not secure enough and is vulnerable to various active and passive
attacks [3]. But, if the live migration is performed in a trusted and secure environment
[8], it could be considered as a guaranteed MTD strategy against several types of attacks.
In this paper, a stealth migration protocol is proposed that obfuscates the VM migration
from the intruder and enhances the security of MTD.

© Springer Nature Switzerland AG 2020
K. Arai et al. (Eds.): FTC 2019, AISC 1069, pp. 394-410, 2020.
https://doi.org/10.1007/978-3-030-32520-6_31

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 395

The rest of the paper is organized as follows: In Sect. 2, an overview of MTD along
with Live Migration is provided. Section 3 summarizes the related work. In Sect. 4, the
threat model is discussed. The Stealth Migration Protocol is proposed in Sect. 5 to
secure the Live Migration process and evaluate it by analyzing the normal vs. migration
traffic patterns in Sect. 6. Finally, Sect. 7 concludes the paper and provides direction
for future research.

2 Moving Target Defense

2.1 What is MTD?

MTD is the concept of controlling change across multiple system dimensions to
increase uncertainty and apparent complexity for attackers, reduce their window of
opportunity, and increase the costs of their probing and attack efforts [2]. MTD mainly
aims to rebalance cyber-security by integrating dynamism, randomization, and diver-
sification techniques in computer networks to hide the properties that an attacker can
exploit to compromise the system. By changing the status of the system to be more
dynamic and less deterministic, MTD boosts the system immunity to different attacks
and increases the workload for the adversary.

MTD utilizes a wide range of systems security techniques and strategies [10, 11]
that include Software Diversification, Runtime Diversification, Communication
Diversification, and Dynamic Platform Techniques [12]. All these techniques intend to
mutate the target system, making it unfamiliar to the attacker and force him to learn
about the target repeatedly and newly, thus decreasing the probability of discovery and
making the attacks costlier or unachievable.

2.2 Why is MTD Insecure?

MTD normally doesn’t happen across fully secure networks. It is probable that the
MTD traffic movement paths span across multiple networks and significant geographic
distances [4] that allow attackers to identify the traceroute and discover the network
footprint. Moreover, a compromised cloud system employing MTD can facilitate
untrusted access to the moving VMs [9]. The ability to view or modify data associated
with MTD or influence the movement services on the source and destination hosts
raises several important security questions [5].

2.3 Live Migration

Live Migration of VM in cloud computing is the process of moving the VM from one
physical host to another without affecting the service availability to users. It requires
the transfer of the complete state of a VM from a host to another that comprises all the
resources the VM uses in the source device. The resources include volatile storage,
permanent storage, the internal state of the virtual CPUs, and connected devices (e.g.,
LAN Cards) [12]. Since the network-attached storage provides permanent room in the
data center, it is not required to move the permanent storage during the VM migration

sdas1@memphis.edu

396 S. Das et al.

process. The internal states of the virtual CPUs are usually only a few kilobytes of data
and does not take considerable amount of time to be transferred. More extended periods
are required to move the volatile memory contents which affect the performance of the
live migration process and hence more attention is given to improve the transfer of
volatile memory from the source to the destination [12].

3 Related Work

Several solutions have been proposed and implemented to secure the MTD approach
over different live migration protocols. Some of these solutions are listed below.

Isolating Migration Network: This approach separates the virtual LAN consisting of
the source and the destination hosts from the migration traffic of other networks, thus
reducing the risk of exposure of migration to the whole network.

Network Security Engine Hypervisor (NSE-H): Xiangin et al. [13] proposed a
secure VM migration framework that is based on hypervisors included with NSE. The
framework provides an extension to the hypervisor by allowing the functionality of
firewall and IDS/IPS to secure the migration from external attacks. It can also check the
network for any intrusion and generate an alarm in case of any intrusion detection. The
drawback of this framework is that the migration data may not remain unmodified
during the transmission process because the data is not hashed or encrypted.

Secure VM-vTPM Migration Protocol: Berger et al. [14] classify the requirements
and propose a new design of a virtual Trusted Platform Module (vIPM). The module
consists of various steps starting from authentication, attestation, and data transfer
stage. It also checks the integrity of the source and the destination. Only after verifying
the integrity, the source VM starts the transfer to the destination VM. The file sent by
the source VM is encrypted at vIPM and transferred to the destination VM. After
completion of the transfer, the data at the vIPM is deleted. In the improved version, the
source VM and target VM first authenticate each other to establish the trusted channel
and then verify the integrity. Both the source and the destination negotiate keys with
each other using DH key exchange algorithm. After the channel is established, the
transfer begins. A specific mechanism for detecting and reporting suspicious activities
is missing in this research.

SSH Tunnel: SSH tunnel is established between the proxies for secure movement.
The proxy server at the source and the destination cloud communicate with each other
and hide the details of both source and destination VMs [6]. In this research, an attacker
can still examine the payloads in the flow by applying algorithms that are based on
statistical characteristics to perform traffic analysis.

IPSec Tunnel: IPSec tunnel protects the data flow at server-to-server levels or from
the edge router to edge router [15]. If MTD were done through IPSec tunnel, IP packets
would be encrypted making it challenging to sniff data and trace. However, this
approach slows down the migration process resulting in increased live migration
downtime.

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 397

The above approaches have significant impact on securing the migration process.
However, their overhead and differing attacking intention of intruders do not converge
to a comprehensive solution. A protocol is proposed in this paper whose primary goal
is to secure the migration process. Besides, the aim of this paper is to minimize the
overhead and migration downtime.

4 Threat Model

In the threat model, an attacker is considered who is using Internet route hijacking to
perform a man-in-the-middle attack on routes over the network to capture appropriate
data from the traffic. Such an attack is emerging and represents a real security threat
[16, 17]. The pre-condition to perform this attack is that the attacker can recognize the
exact movement of the VM on the cloud network. Even with applying security mea-
sures like using encryption, secure tunnels or onion routing, an attacker can still use
traffic characteristics to perform traffic analysis and detect the VM movement [7]. The
attacker can view critical information such as the traffic speed, size, duration, and the
involved endpoint hosts [18, 19] and launch his attack on the movement flow. Once the
attacker detects the VM movement and the destination address, he can continue to
attack the VM. This attack type can be reduced by utilizing secret sharing and moving
VMs using multiple chunks.

5 Proposed Solution

Here, the new stealth migration technique is proposed that secures the live migration
process at both the application and the live migration levels. First, a brief introduction
on secret sharing encryption technology is given that has been used in the protocol,
followed by the description of the protocol design.

5.1 Secret Sharing

Secret sharing is the method of dividing a secret among a group of participants where
each participant allocates one secret share. The secret can only be reconstructed only
when a certain number of shares are combined. Individual shares are of no use by
themselves.

Shamir’s secret sharing [10] is a popular way of splitting the secret. It divides the
secret S (for example, the combination to a secure lockable box) into n pieces of data:
Si, S,, S, in such a way that the knowledge of any k-1 or fewer S; pieces leaves S
completely undetermined, in the sense that the possible values for S seem as likely as
with knowledge of O pieces.

(i) The knowledge of any k or more secret pieces (S;) makes the secret (S) com-
putable. That is, the construction of complete secret S can be done from any
combination of k pieces of data [10].

sdas1@memphis.edu

398 S. Das et al.

Internal Network

$sSs sSS ¢

keyCunkVMs dataChunkVMs
&

Leader VM

Overview of a VM

Anomalous VM Destination VM

Fig. 1. A top-level view of stealth migration protocol

(i) The knowledge of any k-1 or fewer Si pieces leaves S completely undetermined,
in the sense that the possible values for S seem as likely as with knowledge of 0
pieces. Said another way, the secret S cannot be reconstructed with fewer than k
pieces [10].

This scheme is called (k, n) threshold scheme. When [k = n], then every piece of
the original secret S is required to reconstruct the secret.

Secret sharing encoding scheme is used in this stealth migration approach to split
and hide the key information over the network. The key will be distributed by k/n
pieces where k is the minimum number of shares to construct the secret.

5.2 Stealth Migration Protocol

Our stealth migration protocol is now discussed along with different algorithms used to
migrate the VM using our stealth migration protocol.

A top-level view of the stealth migration protocol is shown in Fig. 1. The blue lines
indicate the internal network by which all the five components communicate with each
other. A virtual machine is also shown on the popup in detail. The stealth migration
protocol is designed with five major components:

(i) Controller: Controller of the virtual machine manager (VMM) that controls each
component.

(i1) VM.inomalous: The virtual machine that is identified as affected/anomalous.

(i) VMjeager: Controller marks a VM as leader who leads all intermediate VMs.

(iv) VMguaiable: The virtual machines that accept the data chunks and send to
VMleader'

(V) VMyestination: The virtual machine where the affected VM’s data will be trans-
ferred finally.

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 399

In earlier research [20, 21], collaborative runtime monitors as IDS were created.
They were attached to each running VM and continuously monitor VMs activity. As
soon as the VM acts abnormally, IDS raises an alarm and sends the necessary VM
information to the controller for further analysis. Figure 2 shows the workflow of the
stealth migration protocol.

Each of the components and their tasks are briefly discussed next.

The Controller Component: The controller is the heart of the VMM, which has the
full control over any component of this stealth migration protocol. Typically, it receives
notifications (signals) from VMs, intrusion detection systems (IDS) and starts VM
migration and manages all components to finish the migration. After successful com-
pletion of a migration, it maintains the connectivity of all components on the network.
The controller works according to the following algorithm:

Algorithm (1): Maintain the connectivity among VMs and control over all VMs to
operate the VM migration.

Input: Notifications (From IDS, VMs)
Output: Controlling signal, assigning task

while (true) :

notification = push notification from IDS()

if notification = anomalous
normalTraffic = normal traffic size()
VMsize = check size(VManomaious)
VMstate = state of VM(VManoiamous)
chunkSize = calculate chunk size()
availableVMs = check available VMs()
VMs = choose random 9VM from availableVMs
VMgestination = VMs[random(1-9)]
dataChunkVMs, keyChunkVMs = split VMs()
VMieager = random (from dataChunkVMs)
send instruction to VMgestination ()
secretKey = cerate secret key(256 bit)
send instruction to VMancmaious ()
send instruction to VMjcager ()
for each VM in VMs

send instruction for all VMs ()
if notification (found from VM)

make available (VM)
if notification (found from VMgestination)

make_VManomalous_hOHGYpOt)

disconnect VManomaious_from network ()

connect VMgestination LO_network()

notify IDS()

end while

The utility and usage of some of the methods used in the above algorithm are
discussed below.

sdas1@memphis.edu

400

S. Das et al.

normal_traffic_size(): By using this method, the controller gets the normal traffic
size from the IDS. The IDS provides the normal traffic size (packet transfer per
second) to the controller by analyzing its normal network traffic activity.
check_size(VM gomaions): Uses the IDS to determine the actual size of the affected
virtual machine including OS, applications, dirty pages, etc.

state_of_VM(VM ,,.01amous): IDS provides the current state of the anomalous VM to
the controller. State can be ‘STARTING’, ‘RUNNING’, ‘STOPPED’, ‘SUS-
PENDED?’, etc.

calculate_chunk_size(VMsize, 5n, normalTraffic): Calculates the chunk size by
using the normal Traffic and VMg,.. Since five intermediate VMs are used to
migrate the data, the method determines and adjusts the chunk size by multiples of
five to maintain the migration traffic similar to the normal traffic. For an example,
the normal traffic is 6 MB/s and the VMsize is 500 MB. If the 100 MB data are
transferred over the network at a single instance to five different VMs, an intruder
can easily detect it as a migration traffic. So, if the chunk size can be maintained at
approximately 6 MB, it can easily be transferred to intermediate VMs that even-
tually retains the normal traffic pattern. The purpose of maintaining the chunk size is
to obfuscate the migration from intruder.

check_available_VMs(): Returns all VMs that are currently available.
split_VMs(): Here, nine VMs are used to operate our whole migration process. This
method splits two types of VM lists from the available VM list except for the one
that has already been marked as the destination VM where the affected VM’s data
will be moved eventually. The two lists are dataChunkVMs (where data segment
will be transferred) and keyChunkVMs (where key segment will be transferred).
send_instruction_to_VM joeinarion(): Sends an instruction to destination VM address.
The instruction instructs the VM to open a port and listen to the data coming from
the VMgader address.

send_instruction_to_VM ,omaions(VMs address, VM josinasion address, chunkSize,
secretKey): This method sends chunkSize, secretKey, VMgeqination address, data-
ChunkVM lists (where to send data chunk), keyChunkVM lists (where to send the
key chunk) as parameters to VM ,omalous address. It also sends other instructions
that will be discussed later in VM, ,omalous COMponent section.
send_instruction_to_VM.aaeld VM gnomaions @ddress, dataChunkVMs, keyChunkVMs
address): Sends the VM nomatous @ddress, dataChunkVMs list, keyChunkVMs list
as parameter t0 VMjg,qe, address.

send_instruction_for_all_VMs(VM ,omaions address, VM ,.q., address): Sends the
VMnomalous address, VMje.qer address as a parameter to all VMs. The instruction
commands to transmit the data that has already been received from the anomalous
VM to the leader VM address.

make_available(VM): This method marks the VM as available for further use.
disconnect_VM ,,omaions_from_network(): Disconnects the anomalous VM from the
network.

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 401

make_VM omaions_honeypot(): Marks the anomalous VM as a honeypot to play
further games with the intruder.

connect_VM josrinarion_to_network(): Connects the destination VM to the real
network.

Notify_IDS(): Finally, the controller notifies the IDS (from where it raised an
anomalous activity alarm). The notification signal consists of monitoring the same
VM or monitoring a new assigned VM.

The VM.anomalous Component: In this component, an anomalous VM receives the
instruction from the controller and performs the tasks that have been assigned to it by
the controller. The tasks are conducted in accordance with the following algorithm:

Algorithm (2): Data wrap up, encryption, split data and key, send.
Input: VM gestinations VM8Addresses[], chunkSize, secretKey.
Output: Send data chunks to 8 VMs, notify controller.

while (true)

if instruction (found from the controller)
wrapData = wrap data(VMData, VMgestination address)
encryptedData = encrypt data(wrapData, secretKey)
dataChunks[dataSegment]=split data chunks()
dataChunks [keySegment]=split key chunks()
for VMAddress in VM8Addresses
send to each VMAddress (dataChunks[i])

notify controller (sending successful)

end while

The goal of this component is to send the data chunks and key chunks to the
intermediate VMs in a normal traffic fashion. To do so, the VM wraps all of its VM
data and merges it with the destination VMaddress. VM wraps data into the host
machine by executing secure instructions provided by the controller. The merged data
is then encrypted by using the secret key that is provided by the controller. After the
encryption, the encrypted file is split according to the chunk size that is given by the
controller. Finally, data chunks are sent one by one to the intermediate VMs listed on
dataChunk VM list. The secret key is then split by 2/3 using the secret sharing scheme
where 2 is the minimum share to construct the key and 3 is the total number of shares.
Some of the methods used in the VM nomalous cOMponent are discussed below:

wrap_data(VMData, VM ;.5inaiion address): The affected VM uses this method to
wrap up its whole content and adds the destination VM address with it to make a
new dataset.

sdas1@memphis.edu

402 S. Das et al.

encrypt_data(wrapData, secretKey): Using this method, affected VM encrypts the
whole dataset with the secret key given by controller.
split_data_chunks(chunkSize, encryptedData): After the encryption from the
encrypt_data() method, affected VM splits the encrypted data into small chunks
using the chunkSize. Since five VMs are used to migrate the affected VM inter-
mediately, this method splits the whole file in such a way that it can be equally
distributed to five VMs without affecting the normal traffic flow.
split_key_chunks(secretSharing scheme 2/3): This method splits the secret key into
2/3 size, where 2 is the minimum share to construct the complete secret and 3 is
total share size.

send_to_each_VMAdress(dataChunks[i]): Affected VM sends each data chunk and
key chunk to the specified VM addresses using this method. The method has the list
of datachunkVMs, keychunkVMs and transfers the data chunks and key chunks to
different VM lists.

notify_controller(sending successfully): Finally, using this method, affected VM
sends the successful task completion signal to the controller.

The VMdatachunks and VMkeychunks Component: VMdataChunks and
VMkeyChunks components are the intermediate state of this stealth migration protocol.
The affected VM transfers the chunks (dataChunks, keyChunks) to the VMs that are
listed to the dataChunk or keyChunkVM list as an intermediate storage. The basic
difference between those two components is marking the chunked segment either by
data or key. All VMs, receive chunks (dataChunk or keyChunk), mark them as data
segment or key segment and send them to the VMje,qer address. The following algo-
rithm does the tasks:

Algorithm (3): Receive datachunk, mark it either as data segment or key segment and
send it to the VM,q.; address.

Input: vManomalous adress, dataChunks, VMe,q.r address
Output: Send data chunks to VM,g.q; address.
while (true)

if instruction (found from the controller)
open_port ()
listen (from VMinomaious address)

if recv()

// mark segment for VMdatachunks component
mark as data segment (dataChunks)

// mark segment for VMkeychunks component
mark as key segment (dataChunks)
send_to_VMicager ()
wipe (whole memory)
make available(make its available)

notify controller(availability)

end while

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 403

The methods used in the above algorithm are described below:

mark_as_data_segment(dataChunks): In this method, the VMs mark their data
chunks as a data segment which is necessary to do for the further computation on
VMjeaqer sSection. It helps the leader VM to identify the data chunks and the key
chunks to construct the data and the key.

mark_as_key_segment(dataChunks): Here, the VMs mark their data chunks as a
key segment, then transfer the data to the leader VM and after successfully trans-
mitting the data, the VM wipes itself.

send_to_VM,,qqe{(dataChunks, VM,euq., address): By using this method, VMs send
their received data chunks to the leader VM.

wipe(full memory): The VMs wipe their whole memory along with the data chunks
in preparation for the future migration operation.

make_available(makeavailable) ¬ify_controller(availability): Each VM marks
itself available and notifies the controller about its availability by using these two
methods.

The VMjeader Component: In this component, leader VM receives all data and key
chunks and constructs the secret key from the key chunks by using secret sharing
encoding scheme. After successfully retrieving the secret key, it merges all data chunks
and decrypts the complete data. After decoding the data, this component reveals the
destination address for the data. Those tasks utilize the following algorithm:

Algorithm (4): Construct secret key, reveal destination VM address after decrypting
the data and send data to the destination VM.

Input: dataChunks[], VM Addresses|[]
Output: send data to VMgesgination address
while (true)

if instruction (found from the controller)
open ports (for 7 VM address)
listen from ports(VMAddresses]|])
if rccv ()
dataSegments[], keySegments|[]=separate data or ke
y_chunks (dataChunks)
secretKey = construct key(keySegment([])
data = construct data(dataSegments([])
VMgestinationAddress, VmData = decrypt data()
send data (VMData, VMgestinationAddress)
wipe (whole memory)
make available(make its available)
notify controller(availability)

end while

sdas1@memphis.edu

404

S. Das et al.

The details of the methods used in the above algorithm are discussed below:

dataSegments[], keySegments[] = separate_data_or_key_chunks(dataChunks): In
this method, the leader VM separates the data segments and key segments from
chunks that is received from the open port. This method differentiates the data
chunks and key chunks as the previous component. Every chunk was marked either
data or key when it was sent from intermediate VMs.
construct_key(keySegment[]): Secret sharing encoding scheme is used in this
method to construct the key from the key segments. Since 2/3 encoding scheme is
used, only 2 or more shares can reveal the key. Less than two shares never reveal
the key according to the secret sharing encoding scheme. Shamir’s secret sharing
[10] scheme is used to construct the key.

A 4

Detect anomalous VM by IDS

v
Algorithm. 1: Start VM migration

v
Algorithm. 2: Wrap up VM data, encrypt it, split in
chunks and send to VMs

v
Algorithm. 3: VM receives data/ key chunks and
send to VM., qer

A 4

Algorithm. 4: Construct key, decrypt data, reveal
destination and send VM data to destination

v
Algorithm. 5: Receive VM data, install it, run it and
send acknowledgement to controller

A 4

Fig. 2. Workflow of the stealth migration protocol

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 405

construct_data(dataSegments[]): Here, leader VM merges the data from the data
segments.

decrypt_data(data, secretKey): In this method, complete data is decrypted through
a decryption process. From the data, VM leader separates the destination VM
address and the VM data content to be transferred.

send_data(VMData, VM ;,sinarionAddress): This method is used to send the data to
destination VM address.

Methods wipe(), make available(), and notify_controller() have been described

earlier.

The VM gestination Component: In this component, the destination VM receives the
data from leader VM, installs it, and then makes it runnable before notifying the
controller. The following algorithm performs the tasks:

Algorithm (5): Receives data, install it, notify controller after successful running.
Input: VMData, VMeu4er Address
Output: Notify controller

while (true)
if instruction (found from the controller)
open_port ()
listen (from VMi.,qer Address)
if recv ()
installation (VMData)
checking feasibility()
test all use cases()
if running () = successful
send_ack(to controller)

end while

Methods used in the above algorithm are described below:

installation(VMData): In this method, destination VM installs the VM data for
further processing.

checking_feasibility() and test_all_use_cases(): After installing the VMData, des-
tination VM does the feasibility checking and checks all the test cases to make the
VM workable. If VM works perfectly, it sends an acknowledgment to the controller
with its current VM state.

6 Experimental Results

A cloud environment with OpenStack has been setup for this experiment. The testbed
has one controller node, and four compute nodes. All the nodes are Dell Optiplex 960
machine with 16 GB RAM, 500 GB Hard Disk, and 3 GHz processor. Each of the
nodes has two gigabit-Ethernet cards. One of the Ethernet network interfaces is

sdas1@memphis.edu

406 S. Das et al.

connected to all other nodes via a switch. The other Ethernet interface is connected to
the internet with public IP address. All the nodes are running on the Ubuntu 12.4 LTS
server. The VM live migration is implemented with OpenStack for Moving Target
defense as directed by the guidelines in [1]. Network-attached Storage was imple-
mented among the three nodes via the local area network. In this current OpenStack
implementation, the software does not support automated live migration. Only the user
with admin privilege can issue the command for live migration either from the com-
mand prompt or from the horizon dashboard webpage. So, to automate the live
migration, a python script is written which runs in controller node and any time it gets a
notification from the IDS that is attached to the possible anomalous VM, it automat-
ically instructs the affected VM to live migrate through the stealth migration protocol.

250
200

150

w
©
<
o
v
o
" 100
=
v
E
=
50
o N 1024 2048
084Mb| 5Mb | 12Mb | 30Mb | S0Mb | 80 Mb | 128 Mb | 308 Mb | 512 Mb | 800 Mb Mb Mb
=o—Normal Trffic (s)| 0.01 0.9 0.1 0.5 08 11 2 36 85 142 168 30.8
=g Without SS (s) 0.02 0.1 02 0.6 1 16 24 41 9.5 163 204 425
Adding SS (s) 0.2 08 15 42 65 106 138 241 623 98.6 1202 | 2105

File Size in Megabytes

g NOrmMal Trffic (S) ==ge= Without SS(s) Adding S (s)

Fig. 3. Time taken to transfer different size of VMs in different ways

In the experimentation, VMs of different sizes ranging from 840 KB to 2048 MB
were migrated and measured the time taken to transfer the VM over the network. The
time taken for file transfer was measured in three different ways: normal traffic, tra-
ditional migration traffic, and migration traffic using our stealth migration protocol. In
typical traffic scenario, a similar size file (not a VM) is transferred through the appli-
cation and recorded the time duration to transfer it completely. In traditional migration
traffic scenario, a VM is migrated through the traditional OpenStack live migration
process and recorded the time duration to move a VM from one physical address to

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 407

another physical address. Finally, similar size VMs were migrated from one location to
another through our stealth migration protocol. Figure 3 shows the time taken to
transfer different size VMs for three different scenarios. Figure 3 shows that as long as
the VM size stays between 840 KB to 512 MB, there are no major significant time
changes. When the size of the VM increases from 512 MB, a spike is shown on the
graph, which means that the cost of time needs to be compromised for the sake of the
system security.

17500 ||
14000 -

10500 [|

Packets/s

7000 |

3500 [|

opre N N 1 N N N

Time (s)

Fig. 4. Network analysis of a normal traffic

90000
75000
60000

45000

Packets/s

30000 [

15000

Ofs n n n N n n
0 10 20 30 40 50 60
Time (s)

Fig. 5. Network analysis of a migration traffic

sdas1@memphis.edu

408 S. Das et al.

18000

15000 -

12000

9000

Packets/s

6000

3000 -

Ll n n n n n n n
0 10 20 30 40 50 60 70
Time (s)

Fig. 6. Network analysis of migration traffic using Secret Sharing scheme and stealth migration
protocol

Figures 4, 5 and 6 show respectively the normal traffic, traditional migration traffic,
and migration traffic pattern that used stealth migration while it was transferring
900 MB of data or a VM. It is obvious that in Fig. 5, an attacker can easily distinguish
migration traffic while he was analyzing the VM traffic pattern. The proposed protocol
converts the distinguishable migration traffic pattern into a typical traffic pattern, which
eventually obfuscates it from the attackers. Figures 4 and 6 are pretty much similar in
terms of packets transferred per second which indicates that the attackers would not be
able to distinguish the migration traffic from the normal traffic when the migration goes
through the stealth migration protocol.

7 Conclusion and Future Work

The security concerns of VM live migration and deduced state of the art to secure MTD
are discussed here. In this research, a stealth migration protocol is designed to minimize
the risk and reduce the chance of being identified by an intruder to enhance the security
of MTD. The protocol was implemented on the development testbed using “OpenS-
tack” and the migration traffic was made indistinguishable from the normal traffic to
help hide the migration information from the intruder. In experimentation, different
sizes VMs are used for live migration purpose, and it can be concluded that if the size
of VM is increased beyond 500 MB, the cost of time becomes prominent. Since the
primary goal of this proposed protocol is to migrate the VMs securely while obfus-
cating it from the intruder, the cost of security turns into migration downtime. Inves-
tigation of those issues to minimize the overhead regardless of VM size and plans to
adjust the migration traffic chunk size at a variable rate that could be more accurate to
hide the migration traffic from the intruder are continuing. Further, machine-learning
techniques to detect the migration traffic anomalies and to reduce the false positive
alarms during the migration process are also being investigated.

sdas1@memphis.edu

A Stealth Migration Approach to Moving Target Defense 409

References

10.
11.

12.

13.

14.
15.
16.
17.

18.

19.

Yackoski, J., et al.: Mission-oriented moving target defense based on cryptographically
strong network dynamics. In: Proceedings of the Eighth Annual Cyber Security and
Information Intelligence Research Workshop. ACM (2013)
https://www.dhs.gov/science-and-technology/csd-mtd

Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Xia, F., Madani, S.A.: Virtual machine
migration in cloud data centers: a review, taxonomy, and open research issues. J. Super-
comput. 71(7), 2473-2515 (2015)

Oberheide, J., Cooke, E., Jahanian, F.: Empirical exploitation of live virtual machine
migration. In: Proceedings of BlackHat DC Convention (2008)

Kozuch, M., Satyanarayanan, M.: Internet suspend/resume. In: Proceedings of Fourth IEEE
Workshop on Mobile Computing Systems and Applications. IEEE (2002)

Duncan, A., et al.: Cloud computing: Insider attacks on virtual machines during migration.
In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE (2013)

Achleitner, S., et al.: Stealth migration: hiding virtual machines on the network. In:
INFOCOM 2017-1EEE Conference on Computer Communications (2017)

Suetake, M., Kizu, H., Kourai, K.: Split migration of large memory virtual machines. In:
Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems. ACM (2016)
Deshpande, U., et al.: Fast server deprovisioning through scatter-gather live migration of
virtual machines. In: 2014 IEEE 7th International Conference on Cloud Computing
(CLOUD). IEEE (2014)

https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

Clerk Maxwell, J.: A Treatise on Electricity and Magnetism, 3rd edn, vol. 2, pp. 68-73.
Clarendon, Oxford (1892)

Polash, F., Shiva, S.: Automated live migration in openstack: a moving target defense
solution. J. Comput. Sci. Appl. Inform. Technol. 2(3), 1-5 (2017). https://doi.org/10.15226/
2474-9257/2/3/00119

Xiangin, C., Xiaopeng, G., Han, W., Sumei, W., Xiang, L.: Application-transparent live
migration for virtual machine on network security enhanced hypervisor. China Commun. 8,
32-42 (2011). Research paper

Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., Doorn, L.: Virtualizing the
trusted platform module. In: USENIX Security, pp. 305-320 (2006)

Tamrakar, A.: Security in live migration of virtual machine with automated load balancing.
Int. J. Eng. Res. Technol. (IJERT) 3(12) (2014)

Bgp hijacking. https://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-
Breaking-HTTPS-With-BGP-Hijacking-wp.pdf

Hierarchy token bucket theory. http://research.dyn.com/2013/11/mitm-internet-hijacking/
Fu, X., et al.: On effectiveness of link padding for statistical traffic analysis attacks. In:
Proceedings of 23rd International Conference on Distributed Computing Systems. IEEE
(2003)

Houmansadr, A., Brubaker, C., Shmatikov, V.: The parrot is dead: observing unobservable
network communications. In: 2013 IEEE Symposium on Security and Privacy (SP). IEEE
(2013)

sdas1@memphis.edu

410

20.

21.

S. Das et al.

Dharam, R., Shiva, S.G.: Runtime monitors for tautology based SQL injection attacks. In:
2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic
(CyberSec). IEEE (2012)

Shiva, S., Das, S.: CoRuM: collaborative runtime monitor framework for application
security. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion). IEEE (2018)

sdas1@memphis.edu

